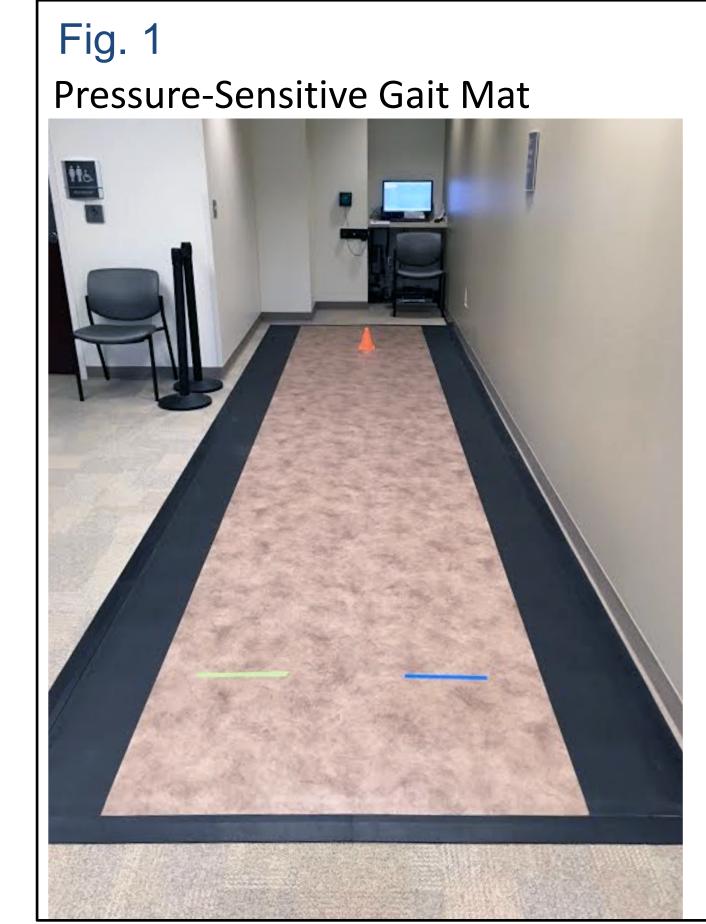
Deep brain stimulation improves gait velocity acutely in patients with Parkinson's disease

Svjetlana Miocinovic, MD, PhD¹, J. Lucas McKay, PhD^{1,2}, Faical Isbaine, PhD³, Joe Nocera, PhD¹, Julie Tran, BS¹, Shirley Triche, NP¹, Christine Esper, MD¹, Pratibha Aia, MD¹, Laura Scorr, MD¹, Lenora Higginbotham, MD¹, Cathrin Buetefisch, MD, PhD¹ ¹Department of Neurology, ²Department of Bioinformatics, ³Department of Neurosurgery, Emory University, Atlanta, GA

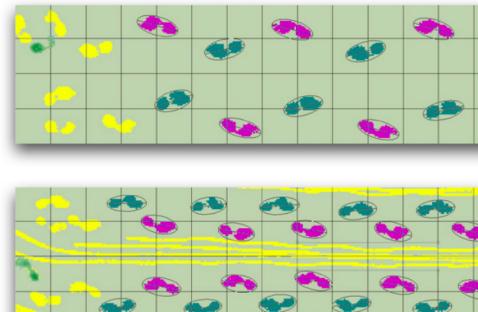
Background

• Deep brain stimulation (DBS) in patients with Parkinson's disease (PD) is highly effective for appendicular symptoms (tremor, rigidity, bradykinesia, dyskinesia), but gait response is less predictable. Here we hypothesize that subthalamic nucleus (STN) and globus pallidus internus (GPi) DBS treatment exerts acute and chronic effects on gait and that the effects are related to the location of the active contact in the targeted nucleus.

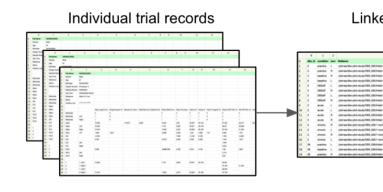
• Our long-term goal is to develop a comprehensive DBS programming algorithm for improvement of gait in PD patients that is based on DBS lead location and its effects on stimulated neuronal tissue.

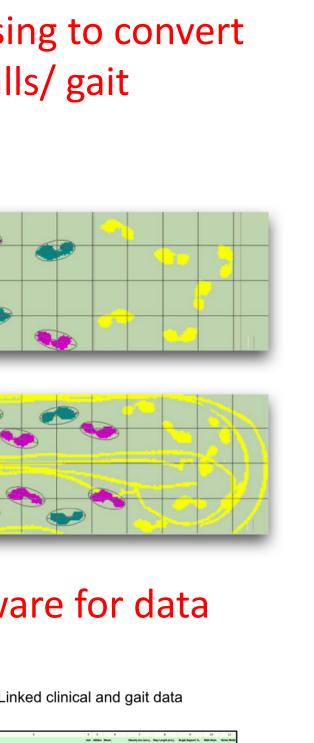

Objectives: To systematically investigate the acute (5 minutes) and chronic (1 month) effects of DBS of STN and GPi on gait velocity in patients with PD.

METHODS – Gait Mat measurements


• Quantitative gait metrics were collected at initial DBS programming visit and at 1-month follow up using a pressure sensitive walkway (Protokinetics Zeno, Fig. 1). • Measurements were obtained before device activation, after monopolar mapping and device off, after 5 minutes of DBS and after 1 month of DBS (same settings; off dopaminergic medications at all time points).

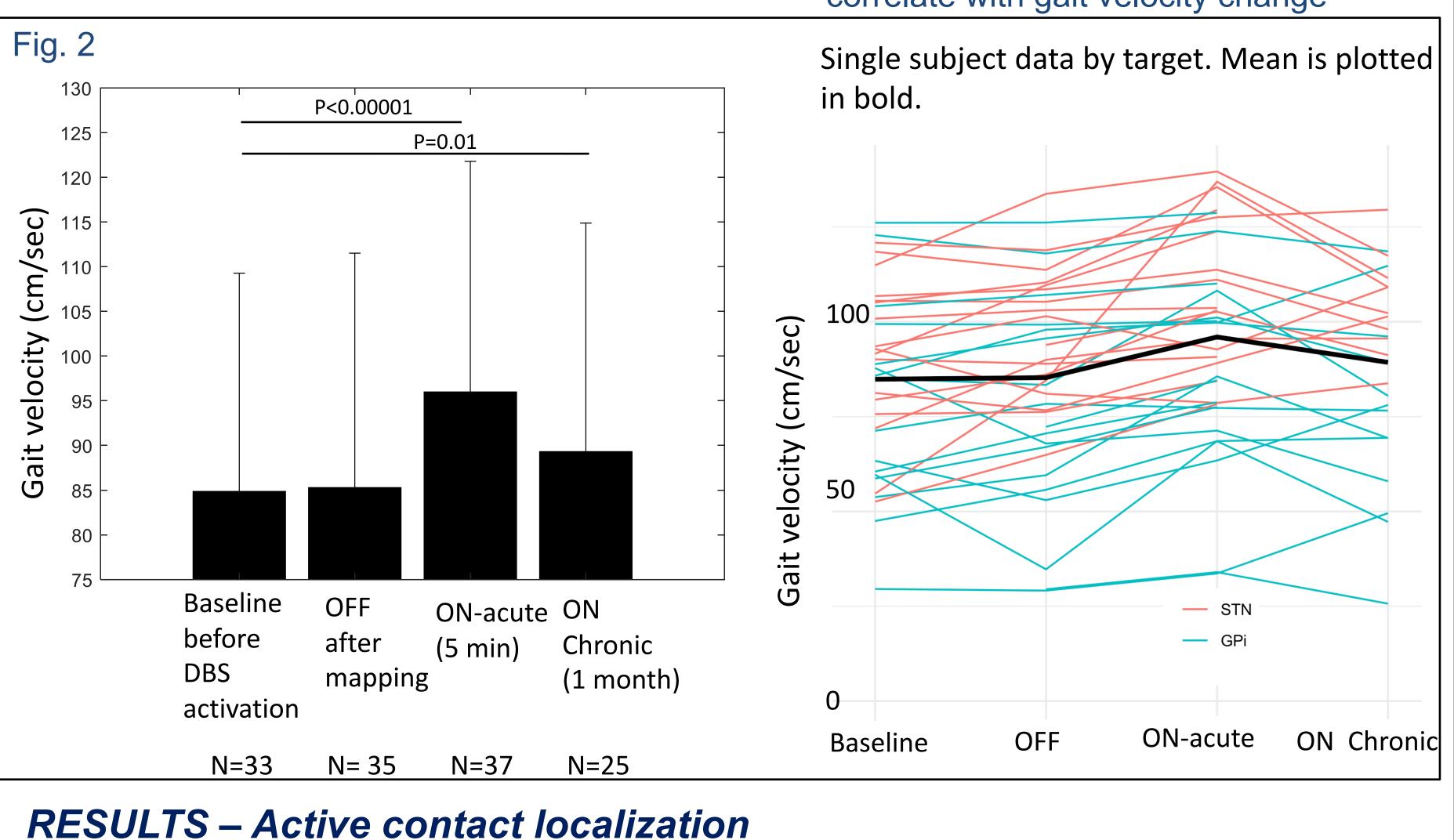
• Patients performed 2-4 walks with left and right turns. Gait velocity during straight walking was the primary outcome (Fig. 1).

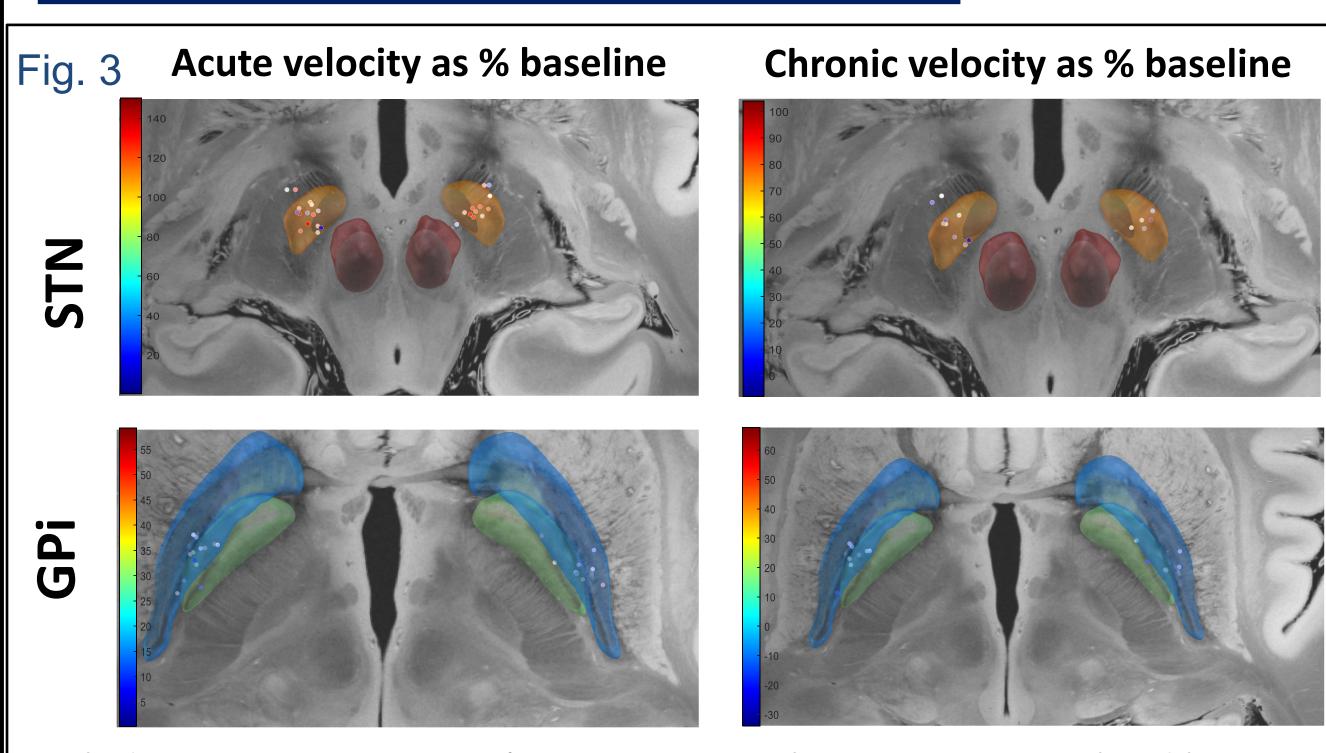

• If patients could not walk without assistance of a person, they were classified as non-ambulatory and excluded from quantitative analyses for that time point. • Linear mixed model was applied for statistical analysis of gait velocity data



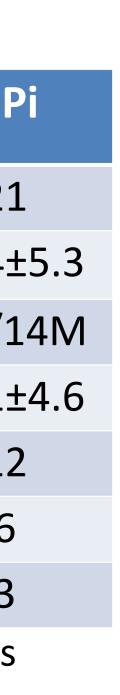
Computer-guided processing to convert pressure maps into footfalls/ gait outcomes

Custom R / REDCap software for data management

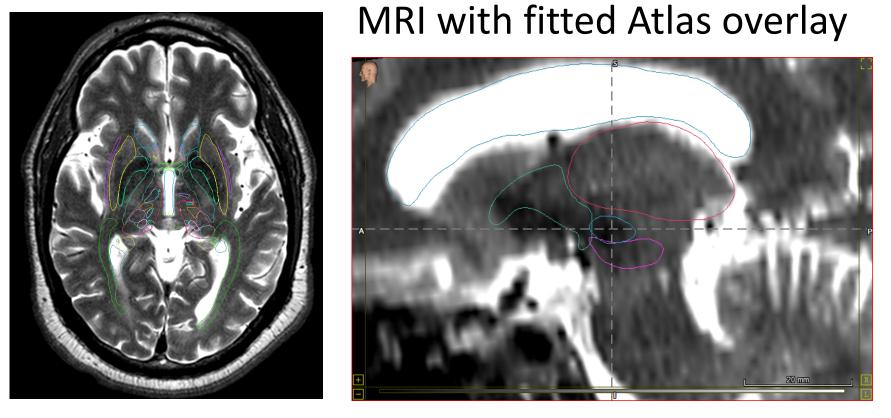



3	4	5	6	7			10	11
	wheth	rillaha	Memo	Velocity (cm./sec.).	Step Langth (cm))	Single Support %,	Walk Partie	State West
rVisie/D85002_practice_Lture_1.cov		12	PuA .	67.86	39.609	00.628	0.455	5.919
Veh/08002_practice_Rum_1.cm		12	Practice R. Turn	62.034	42.417	30.948	0.489	6.756
Visit/080002_baseline_Pture_1.cm		12	right turn	63.615	42.858	31.67	0.484	5.716
Veb/08002.baseline.LAm.1.cov		12	Mitum .	60.103	42.439	01.795	0.49	4.965
Viel/08002_085of Lturn_1.cm		12	correct	96.807	37.062	30.309	0.408	8.054
Vee/D85002_D85oft_Run_1.cev		12	correct	52.064	37 222	29.65	0.448	6.987
Vee/085002_085off_Lture_2.cov		12	correct	62.762	36.994	30.02	0.443	2.771
Vee/D85002_D85off_Rum_2.cm		12	correct	60.301	34.908	36.08	8.421	5.983
Vee/D85002_D85on_acute_Lture_1.cov		12	Puh.	66.277	43.809	38.175	0.48	5.445
Veh/D85002_D85on_aoste_Lture_2.cov		12	Park.	09.093	40.825	01.738	8.476	6.258
Veh/D8002_D85on_acute_Rum_Low		12	Puh .	61.73	42.815	30.611	0.499	4.949
Vel/085002.085on.acute.Rum.Losv		12	Park.	64.077	43.891	01.367	0.502	5.857
etv086002_085on_shvaris_Plum_1.com	FU1	4	PuA.	78.147	47.836	52.485	8.495	6.871
etv0065002_085ion_shearis_Lture_1.cov	FU1	4	PuA .	01.010	49.729	33.425	0.512	7.908
etv086002_085en_chenik_Plum_2.cm	PU1	4	Puh .	77.796	48.412	38.515	0.505	6.395
etv086002_085en_chenic_Lture_2.cev	FU1	4	NA	74.701	47.566	33.457	0.51	5.535
visit/085829, practice, Lturn, 1.cav	P	14	NA	89.171	49.253	01.554	0.459	0.92
watronsize, baseline, Lium, 1.cov		14	NA.	89.292	40.945	31.541	0.481	2.803
web/0805029 practice. Filum, 1.cov		14	Page 1	67.153	48,284	10.479	0.448	3.23

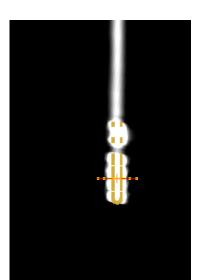
RESULTS – Gait Velocity


	All	STN	GP					
N*	40	19	21					
Age	65.2±8.7	60.5±9.5	69.4±					
Gender	10W/30M	3W/16M	7W/1					
Dx durat (yrs)	12.6±8.0	12.0±10.6	13.1±					
Bilateral	23	11	12					
Unilateral	14	8	6					
Second side	3	0	3					
* • • •	1 1 .		•					

* 2 patients were non-ambulatory at all timepoints



Each dot represents patient's active contact location in normalized brain space (STN: orange, top; Gpi: green, bottom). The color of the dot represents percent change from baseline for acute (left) and chronic (right).



 DBS activation resulted in statistically significant improvement at the acute and chronic time point (Fig.2). Acute clinically meaningful improvement (>5 cm/sec) was seen in 23/33 patients (69%). For 27 patients who had chronic follow up data, 14 (52%) improved, 9 (33%) had no change, and 4/27 (15%) worsened compared to baseline (Fig.2). • 5 cm/sec is considered a clinically meaningful difference in gait velocity Listed clinical variables did not correlate with gait velocity change

 Chi-square analysis of active contact quadrant (DL, DM, VL, VM) and velocity change was not significant for either left or right brain hemispheres in either STN or GPi.

CT lead artifact

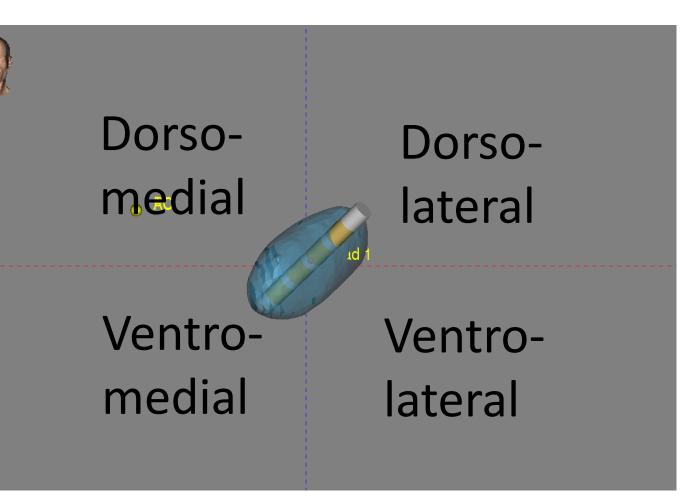
space (MNI).

• Heat map indicates percent velocity change from baseline, calculated as: 100* (Velocity_ON-Velocity_Baseline) / Velocity_Baseline • Chi-square was applied for statistical analysis of quadrant location (4 quadrants) with patients divided into tertiles (top, medium, bottom) based on percent velocity

change.

CONCLUSIONS

month follow up. chronic stimulation. excluded.


quadrant) on gait velocity.

Funding: Emory Udall Center (NIH P50 NS098685) pilot project grant

EMORY UNIVERSITY SCHOOL OF MEDICINE

METHODS – DBS lead contact localization

 Each patient's pre-operative MRI was nonlinearly co-registered to an atlas in CranialVault software. • Postoperative CT was used to semi-automatically localize the DBS lead in the brain, after CT to MRI co-registration.

 The active contacts were categorized in reference to the center of gravity of the nucleus of interest and divided into dorso-lateral (DL), ventrolateral (VL), dorso-medial (DM) and ventro-medial quadrants for the left and right hemispheres. • This division was chosen because DM quadrant corresponds to somatotopic

leg area in the STN and GPi.

• Lead-DBS software was used to visualize all active contacts in a normalized brain

• On a group level, gait velocity increased statistically significantly within minutes of DBS initiation. This effect was reduced but still significant at 1

• Very few patients demonstrated deterioration (4/27) with acute and/or

• The rapid improvement is consistent with immediate reduction of pathologic beta-band neural activity. The lack of significant change between baseline and OFF would argue against a practice effect but a placebo effect cannot be

 Sustained improvement may require reorganization of underlying neuronal networks which was not observed in all patients. This could be due to suboptimal stimulation settings (lower amplitude) at the initial programming.

Longer follow with optimization of the DBS settings is necessary to determine the effect of chronic DBS therapy.

• There was no effect of target nucleus or active contact location (nucleus