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muscle synergies (Torres-Oviedo, 

Macpherson, and Ting, 2006).
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neuromechanical 
simulations

Burkholder and 
Nichols, 2000; 2004
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predict forces.



What is the source of low-dimension muscle 
activity and forces during balance?

�8



What is the source of low-dimension muscle 
activity and forces during balance?

�8

Muscle synergies constrain hindlimb force 
production capability during balance

PA
RT

 1



What is the source of low-dimension muscle 
activity and forces during balance?

�8

Muscle synergies constrain hindlimb force 
production capability during balance

PA
RT

 1

Optimal control of muscle synergies, not 
individual muscles, reproduces balance 
forces across postural configurationsPA

RT
 2



�9

Muscle synergies constrain hindlimb force 
production capability during balance

PA
RT

 1



�10

We compared musculoskeletal and muscle 
synergy constraints on force production.

Burkholder, and 
Nichols, 2000; 2004



�10

We compared musculoskeletal and muscle 
synergy constraints on force production.

• Hypothesis: muscle synergy 
control provides a more limited 
behavioral repertoire than 
individual muscle control.

Burkholder, and 
Nichols, 2000; 2004



�10

We compared musculoskeletal and muscle 
synergy constraints on force production.

• Hypothesis: muscle synergy 
control provides a more limited 
behavioral repertoire than 
individual muscle control.

• Prediction: the range of feasible 
forces that the hindlimb can 
produce will be decreased in the 
presence of muscle synergy 
constraints.

Burkholder, and 
Nichols, 2000; 2004
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constraints + 
muscle synergy 
constraints

Kuo and Zajac 1993; Valero-Cuevas et al., 1998; Schmidt et al. 2003 



Functional muscle synergies constrain 
hindlimb force production capability.

�13

 preferred

McKay and Ting 2008



Functional muscle synergies constrain 
hindlimb force production capability.

�13

 preferred preferred
50 N

musculoskeletal
constraints

• Musculoskeletal 
constraints do 
not vary with 
configuration.

McKay and Ting 2008



Functional muscle synergies constrain 
hindlimb force production capability.

�13

 preferred preferred
50 N

musculoskeletal
constraints

• Musculoskeletal 
constraints do 
not vary with 
configuration.

 preferred
50 N

musculoskeletal
constraints

muscle synergy
constraints

• Musculoskeletal 
constraints do 
not vary with 
configuration.

• Muscle synergy 
constraints 
rotate with the 
limb axis.

McKay and Ting 2008



Functional muscle synergies constrain 
hindlimb force production capability.

�13

 preferred preferred
50 N

musculoskeletal
constraints

• Musculoskeletal 
constraints do 
not vary with 
configuration.

 preferred
50 N

musculoskeletal
constraints

muscle synergy
constraints

• Musculoskeletal 
constraints do 
not vary with 
configuration.

• Muscle synergy 
constraints 
rotate with the 
limb axis.

 preferred
50 N

musculoskeletal
constraints

muscle synergy
constraints active forces (10x)

• Musculoskeletal 
constraints do 
not vary with 
configuration.

• Muscle synergy 
constraints 
rotate with the 
limb axis.

McKay and Ting 2008



Functional muscle synergies constrain 
hindlimb force production capability.

�13

 preferred preferred
50 N

musculoskeletal
constraints

• Musculoskeletal 
constraints do 
not vary with 
configuration.

 preferred
50 N

musculoskeletal
constraints

muscle synergy
constraints

• Musculoskeletal 
constraints do 
not vary with 
configuration.

• Muscle synergy 
constraints 
rotate with the 
limb axis.

 preferred
50 N

musculoskeletal
constraints

muscle synergy
constraints active forces (10x)

• Musculoskeletal 
constraints do 
not vary with 
configuration.

• Muscle synergy 
constraints 
rotate with the 
limb axis.

 preferred
50 N

100 N

musculoskeletal
constraints

muscle synergy
constraints active forces (10x)

• Musculoskeletal 

constraints do 

not vary with 

configuration.

• Muscle synergy 
constraints 

rotate with the 

limb axis.

• Horizontal-plane 

forces not well-

represented.

McKay and Ting 2008



Functional muscle synergies constrain 
hindlimb force production capability.

�14



Functional muscle synergies constrain 
hindlimb force production capability.

• Musculoskeletal constraints on force production do not 
uniquely determine balance forces.

�14



Functional muscle synergies constrain 
hindlimb force production capability.

• Musculoskeletal constraints on force production do not 
uniquely determine balance forces.
• We can start talking about how the nervous system 

addresses this redundancy.

�14



Functional muscle synergies constrain 
hindlimb force production capability.

• Musculoskeletal constraints on force production do not 
uniquely determine balance forces.
• We can start talking about how the nervous system 

addresses this redundancy.
• Predicts no changes in balance forces with configuration.

�14



Functional muscle synergies constrain 
hindlimb force production capability.

• Musculoskeletal constraints on force production do not 
uniquely determine balance forces.
• We can start talking about how the nervous system 

addresses this redundancy.
• Predicts no changes in balance forces with configuration.

• Muscle synergy forces rotate with the limb axis, a known 
sensory frame (Shadmehr and Bizzi, 1994; Bosco, Poppele, and Eian, 2000).

�14



Functional muscle synergies constrain 
hindlimb force production capability.

• Musculoskeletal constraints on force production do not 
uniquely determine balance forces.
• We can start talking about how the nervous system 

addresses this redundancy.
• Predicts no changes in balance forces with configuration.

• Muscle synergy forces rotate with the limb axis, a known 
sensory frame (Shadmehr and Bizzi, 1994; Bosco, Poppele, and Eian, 2000).
• The limb axis may be encoded as both a sensory and motor 

frame, possibly accelerating motor learning (Sanger, 1994).

�14



Functional muscle synergies constrain 
hindlimb force production capability.

• Musculoskeletal constraints on force production do not 
uniquely determine balance forces.
• We can start talking about how the nervous system 

addresses this redundancy.
• Predicts no changes in balance forces with configuration.

• Muscle synergy forces rotate with the limb axis, a known 
sensory frame (Shadmehr and Bizzi, 1994; Bosco, Poppele, and Eian, 2000).
• The limb axis may be encoded as both a sensory and motor 

frame, possibly accelerating motor learning (Sanger, 1994).
• Predicts changes in balance forces with configuration.

�14



What is the source of low-dimension muscle 
activity and forces during balance?

�15

Muscle synergies constrain hindlimb 
forces during balance

PA
RT

 1

Optimal control of muscle synergies, not 
individual muscles, reproduces balance 
forces across postural configurationsPA

RT
 2



�16

Optimal control of muscle synergies, not 
individual muscles, reproduces balance 
forces across postural configurationsPA

RT
 2



What is the source of low-dimension muscle 
activity and forces during balance?

�17

muscle synergy control
• Muscle synergy constraints 

on muscle coordination? 
(Tresch et al., 1999; Ting and Macpherson 
2005)

musclesmuscle
synergies

forces +
motioncontroller



What is the source of low-dimension muscle 
activity and forces during balance?

�17

• Optimal muscle 
coordination pattern? 
(Todorov and Jordan 2002; Fagg et al., 2002)
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min ∑ei2

muscles

forces +
motioncontroller

muscle synergy control
• Muscle synergy constraints 

on muscle coordination? 
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We compared optimal muscle control and 
muscle synergy control in four limbs.

• Hypothesis: muscle synergies are 
generalized across postural 
configurations, biasing motor 
performance and increasing 
control cost compared to optimal 
muscle control.

• Prediction: forces generated by 
muscle synergy control will vary 
with postural configuration as in 
data; forces generated by optimal 
muscle control will not.
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Muscle synergy control predicts data better 
than optimal muscle control but costs more.
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Coordinating the CoP, rather than the CoM, 
doesn’t work.
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CoM: Lockhart and Ting, 2007; Welch and Ting, 2009; CoP: Winter, 1995
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• Changing force patterns result from generalizing muscle 
synergies across conditions, not from new optimal muscle 
solutions.
• Locally optimized muscle synergies may resemble optimal 

muscle control (Ting and McKay 2007; Kurtzer et al., 2006; Berniker et al., 2009).
• Muscle synergy generalization may cause behavioral biases 

not predicted by optimal muscle control.

• Controlling muscle synergies requires more muscle 
activation than controlling individual muscles.
• May provide faster computation or learning (Fiete et al., 2004).
• May be near optimal overall.
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Interactions between neural and biomechanical 
systems explained this behavior.

• Optimization has been a guiding principle for understanding 
how motor systems are organized - and even how they 
evolved to be that way (Alexander, 2001; Hoyt and Taylor, 1981).

• Mechanical constraints are critical to understanding first 
order motor behaviors (Collins et al., 2001).

• Neural constraints are required to explain patterns of 
generalization (Shadmehr and Mussa-Ivaldi, 1994).
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Muscle synergies can facilitate understanding 
both normal and impaired movement.

• We use muscle synergies to characterize healthy cats and 
college students.

• Muscle synergies can also serve as a diagnostic tool.
• Hemiplegic stroke patients exhibit fewer muscle synergies 

that are merged versions of healthy modules (Clark et al, 2010; 
Dewald et al., 1995).

• Muscle synergies can also serve as a rehabilitative target.
• Pathological muscle synergies after stroke can be escaped 

with focused training and understanding of muscle synergy 
function (Ellis et al., 2005).
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Publications resulting from this work

• McKay JL, Burkholder TJ, and Ting LH. Biomechanical 
capabilities influence postural control strategies in the cat 
hindlimb. J Biomech 40: 2254-2260, 2007.


• McKay JL, and Ting LH. Functional muscle synergies constrain 
force production during postural tasks. J Biomech 41: 299-306, 
2008.


• Ting LH, and McKay JL. Neuromechanics of muscle synergies 
for posture and movement. Curr Opin Neurobiol 17: 622-628, 
2007.


• McKay JL, and Ting LH. Muscle synergies produce expensive 
behavioral biases during postural control. in prep.


• McKay JL, and Ting LH. The nervous system reduces the 
dimension of sensory inflow during responses to postural 
perturbations. in prep.
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Thank you!

• Jane Macpherson, Ph.D.


• Tom Burkholder, Ph.D. 


• Gelsy Torres-Oviedo, Ph.D.


• NIH HD46922
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“I used to think that the brain was the most 
wonderful organ in my body. Then I realized who 
was telling me this.” 

Emo Philips
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