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Identifying biases in a multicenter MRI database
for Parkinson’s disease classification: Is the

disease classifier a secret site classifier?
Raissa Souza, Anthony Winder, Emma A.M. Stanley, Vibujithan Vigneshwaran, Milton Camacho, Richard

Camicioli, Oury Monchi, Matthias Wilms*, and Nils D. Forkert*

Abstract— Sharing multicenter imaging datasets can be
advantageous to increase data diversity and size but may
lead to spurious correlations between site-related biolog-
ical and non-biological image features and target labels,
which machine learning (ML) models may exploit as short-
cuts. To date, studies analyzing how and if deep learning
models may use such effects as a shortcut are scarce.
Thus, the aim of this work was to investigate if site-related
effects are encoded in the feature space of an established
deep learning model designed for Parkinson’s disease (PD)
classification based on T1-weighted MRI datasets. There-
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fore, all layers of the PD classifier were frozen, except for
the last layer of the network, which was replaced by a linear
layer that was exclusively re-trained to predict three poten-
tial bias types (biological sex, scanner type, and originating
site). Our findings based on a large database consisting of
1880 MRI scans collected across 41 centers show that the
feature space of the established PD model (74% accuracy)
can be used to classify sex (75% accuracy), scanner type
(79% accuracy), and site location (71% accuracy) with high
accuracies despite this information never being explicitly
provided to the PD model during original training. Overall,
the results of this study suggest that trained image-based
classifiers may use unwanted shortcuts that are not mean-
ingful for the actual clinical task at hand. This finding may
explain why many image-based deep learning models do
not perform well when applied to data from centers not
contributing to the training set.

Index Terms— Biases, Deep learning, Shortcut learning

I. INTRODUCTION

SHARING multicenter medical imaging data is assumed
to lead to several benefits, such as increasing interdisci-

plinary collaboration, avoiding duplication of clinical trials and
data collection (e.g., healthy control cohort), supporting novel
medical insights, and training more robust machine learning
(ML) models for computer-aided diagnosis [1]. Thus, there
have been significant investments in creating large multicen-
ter databases, such as the Parkinson’s Progression Markers
Initiative (PPMI)1 and the UK Biobank [2], among others.
Compiling data from multiple acquisition sites can improve
the diversity and size of the database as a whole, which
is assumed to be beneficial for training and testing of ML
models, especially for medical image analysis where data
is often rare at single sites [3]–[6]. The utilization of large
multicenter datasets is expected to enhance the performance
of trained ML models, enable and improve the identification
of subtle disease expressions in the data, and increase their
generalizability to unseen data. However, a lack of intra-site
data variation may result in spurious correlations between ’site-
related effects‘ (image features) and the target label, which ML
models could exploit. For MRI-based neuroimaging data, these
site-related effects or biases could originate from complex fac-
tors such as biological differences (e.g., age, sex, pathological

1https://www.ppmi-info.org/.
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characteristics) and non-biological differences (e.g., sample
size and bias, scanner type and model, acquisition parameters,
head coil, and magnetic field properties) across sites. In the
context of disease classification, imbalanced distributions of
pathological characteristics between sites can also cause ML
models to learn spurious associations between site-related
effects and a patient’s disease state, introducing biases and
potentially resulting in a concealed site classifier rather than
an accurate disease classifier [7].

Potential shortcut learning based on site-related effects
has been observed in various neuroimaging applications. For
instance, sociodemographic factors such as socioeconomic
status, race, and pubertal development stage were found to
influence the accuracy of a deep learning model trained to
classify sex using multicenter T1-weighted brain MRI datasets
from pediatric subjects [8]. Disparities in performance as-
sociated with site-related effects, such as scanner types and
magnetic field, have also been identified in an ML model for
Alzheimer’s disease diagnosis using multicenter T1-weighted
brain images [9]. Additionally, it has been demonstrated that
scanner vendors can be distinguished in a multicenter func-
tional MRI database [10].

Techniques to minimize site-related effects, such as bias
mitigation [11] and data harmonization methods [12], are
nowadays frequently utilized in medical image analysis. How-
ever, explicitly identifying all site-related effects (confounders)
is very challenging and often impossible. Moreover, even
with the most advanced mitigation strategies, a successful and
complete removal of unwanted site-related effects may not be
possible, as it would necessitate the disentanglement of site-
related effects from disease-related features without harming
the performance of the model. However, a ML model may
rely heavily on information that co-occurs with the site-related
effects when learning disease characteristics, which can lead
to bad performance when applied to data from centers that did
not contribute to the training set.

Currently, most studies [12]–[14] that apply techniques to
reduce site-related effects in neuroimaging data simply assume
that some effects exist without explicitly specifying them.
Moreover, most previous works in this domain restrict their
evaluations to a quantification of improved accuracy and/or
generalizability. In contrast to that, studies analyzing if and
how deep learning models really exploit such effects as a
shortcut are scarce. In T1-weighted brain MRI, differences
in imaging protocols, scanner vendors/models, and magnetic
field strengths have been associated with two factors (1)
image quality (e.g., signal-to-noise ratio and contrast-to-noise
ratio) and (2) brain anatomy (e.g., cortical thickness and brain
volumes) [15], [16]. Moreover, site characteristics, such as
differences in the number of datasets available for ML model
training, diagnostic criteria, and training and experience of
the medical experts establishing the ground truth can lead to
systematic site-specific distinguishable features. These non-
biological differences (site biases) may serve as potential
shortcuts for a deep learning model in its primary task of
disease classification.

Biological variations related to the manifestation of the
disease under study in medical images could also introduce

bias(es) in the model. For instance, in the case of Parkinson’s
disease (PD), researchers have observed significant sex dif-
ferences, with males exhibiting earlier disease onset, higher
occurrence, and higher prevalence [17], [18]. Males also tend
to experience more severe motor and cognitive symptoms
compared to females. A deep learning model may exploit
these inherent biological biases (disease biases) to distinguish
individuals with PD from healthy individuals using MRI data,
particularly if there are variations in patient characteristics
across sites. Even worse, powerful deep learning models may
use a complex combination of biological and non-biological
biases as shortcuts.

Therefore, this work aims to investigate if site-related effects
are encoded in the feature space of an established deep
learning model designed for PD classification based on T1-
weighted brain MRI [19]. For our analysis, we utilize a
diverse database of 1880 subjects with imaging data acquired
across 41 different sites. Our major contributions include: (1)
an in-depth analysis of how deep learning models encode
site-related information in the feature space of the original
disease classifier and (2) an evaluation of which effect(s) are
potentially used as shortcuts. Such an analysis provides, for
the first time, a better understanding of how biased variables
are encoded in deep learning models, which could eventually
result in a more appropriate selection and/or development of
mitigation strategies.

II. MATERIAL AND METHODS

In this work, we used an established deep learning-based
PD classifier trained using a large and diverse multicenter
database to identify potential shortcuts caused by differences in
multiple biological and non-biological features across centers.
Thus, we investigated if the feature space of a deep learning
model trained to classify patients with PD and healthy subjects
(HS) holds information related to the originating site that
acquired the data, the scanner type used to acquire the data,
and the sex of the participants without ever being provided
this information directly during training. The presence of such
information would suggest that the model may use them as
shortcuts for the disease classification.

A. Dataset
All analyses described in this work were performed using a

multicenter PD database consisting of 1880 T1-weighted MRI
scans (867 PD and 1013 HS) collected across 41 centers2,3,4

[2], [20]–[27]. Datasets available at each center were split
into 80% for training and 20% for testing, totaling in 1478
images (680 PD [418 males and 262 females] and 798 HS
[497 males and 301 females]) used for training and 402
images (187 PD [124 males and 63 females] and 215 HS
[138 males and 77 females]) used for testing. Known non-
biological variabilities in this database include differences in
scanner vendors (i.e., Siemens, GE, and Phillips), 19 scan-
ner models, and MRI magnet strength (i.e., magnetic field

2https://www.ppmi-info.org/
3https://www.mcgill.ca/neuro/open-science
4https://openneuro.org/datasets/ds000245/versions/00001

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3352513

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



RAISSA SOUZA et al.: IDENTIFYING BIASES IN A MULTICENTER MRI DATABASE FOR PARKINSON’S DISEASE CLASSIFICATION: IS THE DISEASE CLASSIFIER
A SECRET SITE CLASSIFIER? 3

strengths of 1.5T or 3.0T). Center-specific details can be
found in the supplementary material. Briefly described, the
in-house developed pre-processing pipeline (same as used in
[19]) that was applied to all datasets consisted of skull-striping
[28], resampling to an isotropic resolution of 1 mm using
linear interpolation, bias field correction [29], affine image
registration to the PD25-T1-MPRAGE-1mm brain atlas [30],
and cropping to 160×192×160 voxels via center-cropping to
reduce background information.

Each center received ethics approval from their local ethics
board and received written informed consent from all the
participants in accordance with the declaration of Helsinki.

B. Parkinson’s disease classifier
The state-of-the-art simple fully convolutional network

(SFCN) [31], which achieved an accuracy of 78.8% in detect-
ing PD using the same multicenter T1-weighted MRI datasets,
was utilized [19] in this work. Due to the necessary exclusion
of participants with unavailable site and scanner information
for this analysis, only 867 of the original 1051 patients with
PD and 1013 of the original 1026 healthy subjects from
[19] were included in this study. As a result, the SFCN was
retrained on this reduced number of included subjects, but still
achieved a comparable classification accuracy of 74% on the
test set. The Adam optimizer with an initial learning rate of
0.001, a decay rate of 0.003, and batch size 5 was used during
training. The best model (lowest binary cross entropy testing
loss) was saved for evaluation based on early stopping with
patience of 10 epochs.

C. Shortcut learning analysis
To identify possible shortcuts in the trained model, all layers

of the pre-trained PD classifier model were frozen, except for
the final layer, which was replaced with a customized linear
layer designed to classify the specific biases of interest, namely
sex (n=2), site (n=41), and scanner (n=19). In doing so, we
aimed to determine if bias-related information is present in the
penultimate layer of the PD classifier, despite this information
not being directly available during model training. In this
context, it is important to highlight that the linear layer serves
as the model’s output. Each node in this layer represents a
fixed feature related to the likelihood of a specific sex, site,
or scanner. Consequently, the linear layer cannot create new
intermediate features for the bias variables beyond the frozen
layers. It essentially places a linear decision plane through
the existing and fixed feature space. For sex classification,
we employed a binary output layer with a sigmoid activation
function, while for site and scanner type classification, multi-
class output layers with softmax activation functions were
used, comprising of 41 and 19 neurons, respectively. For all
cases, the Adam optimizer and early stopping were used as
for the original PD model as described in the previous section.
Fig. 1 summarizes the workflow.

Once the bias training was completed, our next step was
to investigate whether individual classifications based on sex,
site, or scanner were associated with a significantly higher
or lower occurrence of PD. This analysis aimed to confirm
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Fig. 1. Workflow diagram of the Parkinson’s disease classifier and each
bias of interest.

potential model shortcuts. To accomplish this, we conducted
a Fisher exact test to examine the relationship between PD
status and sex, and Fisher-Freeman-Halton exact tests to
assess the association between PD status and site or scanner.
For the potential shortcut features that were significantly
associated with PD status, we performed linear regression-
based mediation analyses to determine the extent to which the
association between a patient’s true and predicted PD status
is mediated by the perceived values of these shortcut features,
as determined by the sex, site, and scanner classifiers. More
specifically, we performed linear regressions as described in
[32] to estimate the total and direct effects. Then, we ran
the PROCESS macro [33] to perform significance testing
on the indirect effects. Finally, we performed bootstrapping
as recommended in [34] to compute the 95% confidence
intervals for the mediation effect of a derived variable rep-
resenting the occurrence of PD disease. Our code is avail-
able at https://github.com/RaissaSouza/bias-identification and
all statistical analyses were performed using the IBM SPSS
v29 software package.

D. Evaluation metrics
To quantitatively evaluate our results, we computed the

accuracy, F1-score, and performed regression-based mediation
analyses for the PD classifier as well as for each of the
potential shortcut classifiers (sex, site, and scanner). Model-
level F1-scores were computed as the weighted average of
the F1-score across all the model’s class labels, where each
class label was weighted according to its frequency within
the test data. Additionally, we utilized confusion matrices to
visually represent sensitivity and specificity, providing further
insights into the performance of the classifiers. For qualitative
analysis, we employed UMAP projections [35], which enable
an exploration of how the information in the feature space
was organized and clustered based on the potential shortcut
variables of interest.
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TABLE I
ACCURACY AND F1-SCORE FOR PARKINSON’S DISEASE (PD)

CLASSIFIER AND SHORTCUT LEARNING MODELS

Bias of interest Models Accuracy F1-score
Features Classifier

n/a PD PD 0.74 0.73
Sex PD (frozen) Sex 0.75 0.74
Site PD (frozen) Site 0.71 0.65
Scanner PD (frozen) Scanner 0.79 0.75

TABLE II
STATISTIC TEST AND MEDIATION ANALYSIS FOR SEX, SITE, AND

SCANNER AS POTENTIAL SHORTCUT FEATURES USED BY THE PD
CLASSIFIER. FFH = FISHER-FREEMAN-HALTON; CI = CONFIDENCE

INTERVAL.

Potential
shortcut
feature

Fisher/
FFH
exact test

Mediation Analysis

Direct Effect Indirect Effect

- p-value

Effect
Size
(Std.
Error)

p-value

Effect
Size
(Std.
Error)

95%
Lower
CI

95%
Upper
CI

Sex 0.676 - - - - -

Site 0.001 1.490
(0.283) 0.001 1.499

(0.225) 1.118 2.002

Scanner 0.001 2.003
(0.261) 0.001 0.728

(0.173) 0.460 1.138

III. RESULTS

The results of this work suggest that the feature space of
the PD classifier indeed encodes information from the biases
investigated: sex, site, and scanner, even with this simple re-
training setup of only replacing and retraining the final layer
of the PD model with a single dense layer ’head’ while all
other layers remained frozen. As can be seen in Table 1, the
feature space of the model that was initially trained to classify
patients with PD and healthy subjects (HS) without ever being
given any direct information about sex, site, or scanner type
can be used directly to classify sex, site, and scanner with high
accuracies (75%, 71%, and 79%) similar to the PD classifier
(74%).

Even though the database as a whole was well-balanced
(867 PD and 1013 HS) and the F1-score (73%), which consid-
ers the proportion of PD and HS in the testing set, was similar
compared to the accuracy (74%) for PD vs. HS classification,
the model achieved a considerably higher sensitivity (85%)
than specificity (64% - Fig. 2 A). This demonstrates that the
PD classifier was better at identifying patients with Parkinson’s
disease than classifying healthy subjects.

Similar results were observed when analyzing the presence
of sex information in the PD classifier feature space. Fig.
2B shows that a better performance was achieved for males
(92%) than females (45%), although their representation is
well-balanced (males [542 patients with PD and 635 HS] and
females [325 patients with PD and 378 HS]) for the disease
status, resulting in a non-significant Fisher exact test (p =
0.676, Table 2).

Although the classification of the originating site achieved
the lowest accuracy (71%) and F1-score (65%), the results
achieved are still considerably better than the chance level.

As can be seen in the confusion matrix (Fig. 2C), approx-
imately 20 sites were correctly identified based on the PD
classifier feature space. Furthermore, the occurrence of PD
differed significantly between sites (p<0.001) and was a
partial mediator of the association between true and predicted
PD status (Table 2). Notably, the indirect effect size of the
mediation analysis, which represents the proportion of the total
association between the true and predicted PD status that is
attributable to the mediation effect, was estimated to be greater
than the direct effect size, which represents the proportion of
the total association that is attributable to true PD status alone.
These results suggest that even though multicenter data present
more complex variability due to the combined effects (total
number of samples, scanners, sex, and number of patients and
healthy subjects), sites are still distinguishable (Fig. 3).

As shown in Table 1, the feature space of the classifier
originally trained for the PD classification task also achieved
a higher accuracy (79%) and F1-score (75%) for identifying
scanners than for the task it was primarily trained for, which,
again, is considerably higher than the chance level. This result
can be further confirmed visually in Fig. 2D that shows that
only 5 out of 19 scanner types were completely misclassified.
Moreover, Fig. 4 demonstrates how well different scanners
were clustered in the feature space of the PD classifier in
the UMAP, suggesting a potential strong use of the scanner
type to learn the PD classification task. Quantitatively, the
occurrence of PD also differed significantly between scanners,
with this variable acting as a significant (partial) mediator
between true and predicted PD status. Combined with the
mediation effects shown for sites, these results support the
hypothesis that information related to conditions under which
a patient’s data was acquired may contribute significantly to
predicting their PD disease status. For instance, the model
may associate Parkinson’s patients and healthy subjects to
the scanner used to acquire the data rather than biologically
plausible brain morphology differences.

IV. DISCUSSION

In this work, we presented an in-depth analysis investigating
if and how a deep learning model designed to classify patients
with PD and healthy subjects encode biological (sex) and
non-biological (site and scanner) information in the feature
space that may not be causally relevant from a pathological
perspective. Most importantly, the results of this work show
that by using the feature space of the PD classifier, it is
possible to classify sex, sites, and scanners with high accuracy,
although this information was never explicitly provided to
the original classification model. Thus, our results raise the
question if the baseline PD model actually learned to reliably
distinguish patients with PD subjects using biologically rel-
evant information or if it relies, at least to some extent, on
shortcuts to achieve this task, given the high performance of
the bias classifiers.

Our results suggest that the PD classifier can identify males
with PD with higher accuracy, potentially because of the more
frequent manifestation of the disease in males [17], [18]. This
observation might suggest that considering sex as a feature
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Fig. 2. Confusion matrices showing sensitivity and specificity for each classifier evaluated in this study.

for the classifier could be justified, given the sex-dimorphic
nature of PD. However, our mediation analysis revealed that
sex is not acting as a mediator between true and predicted PD
status. This result is not surprising, considering that the entire
database contains a balanced representation of patients and
healthy subjects when stratified by sex. As a result, the lack of
a mediation effect from sex on the PD classifier’s predictions
is consistent with the balanced representation of male and
female subjects in the dataset. Nevertheless, it is essential
to be cautious when a trained model exhibits disproportional
subgroup performance (e.g., males vs. females), as this could
suggest model unfairness and limit its reliability for clinical
use.

Our findings showed that the site acts as a significant (par-
tial) mediator between true and predicted PD status. However,
it is important to note that the site bias is not extensively
explored in the literature and is often considered the same as
the scanner bias. Within this context, it should be emphasized
that a single site can also use multiple scanners so that the two

biases are not the same. Moreover, it should be pointed out that
considerable differences exist in the patient distribution among
the sites included in this work. For example, OASIS provided
only healthy subjects, introducing the bias of class imbalance.
On the other hand, the Biocog study focused on examining rep-
resentative patients across the entire disease spectrum, without
dementia at baseline, encompassing biases typically associated
with patients who agree to participate in studies. In contrast,
PPMI primarily targeted de-novo patients with PD, leading to
a potential bias related to differences in disease stage. This
disparity in disease stage and class imbalance across sites
could potentially be utilized as a shortcut associated with the
site variable that is independent but may interact with the
scanner bias.

The ability to identify scanner types from neuroimaging
data has also been observed previously [10]. However, while
those findings generally support our results, we demonstrated
that scanner identification was possible even when the rep-
resentations learned by the deep learning model were not
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Fig. 3. Although sites present more complex variability due to the
combined biological and non-biological effects, clusters relating to dif-
ferent sites can be seen. The small cluster on the left side may be
associated with bad image quality, as ring artifacts were identified in
the data provided by BIOCOG.

Fig. 4. Clusters relating to different scanner types can be seen. The
small cluster on the left side may be associated with bad image quality,
as ring artifacts were identified in the data provided by BIOCOG, which
scanned their patients using a Siemens Sonata scanner.

even optimized for this task, which is in stark contrast to
previous work that specifically trained ML models for this
task. More importantly, we established that this variable acts
as a significant (partial) mediator between true and predicted
PD status. Thus, future research direction should aim to reduce
the model’s reliance on scanner type (i.e., unlearning scanner

type effects), investigating how bias encoding may change as
a function of different bias mitigation techniques. A proposed
approach for unlearning scanner type effects may involve a
combination of multi-task learning and adversarial debiasing
methods, as, for example, presented in [12]. Their training
procedure involved predicting brain age, classifying scanner
type, and unlearning the scanner type using four loss functions,
including a confusion loss from the adversarial debiasing field.
Although their results showed promise, they did not initially
demonstrate that scanner types were used as shortcuts by the
model. Additionally, their work included only three sites with
similar data distribution, which limits its direct application to
our dataset comprising 41 unique sites. Each site in our study
provides distinct distributions, including variations in scanner
types, data acquisition subjects (patients/healthy subjects),
and other factors. Moreover, the authors [12] suggest that
scanner unlearning in a disease classification model requires
either an overlapping distribution (a dataset segment with
subjects having PD and healthy subjects from all intended
scanners for harmonization) or a healthy cohort with data from
all targeted scanners. This requirement, aimed at preserving
disease-related information, limits our use of an overlapping
distribution or a healthy cohort for scanner unlearning in our
unique database.

Overall, our study reveals that even when information unre-
lated to PD pathology is not explicitly provided to the model
during training, it can still discover spurious correlations and
act as a hidden site classifier rather than a disease classifier.
These findings emphasize the importance of conducting more
comprehensive model analyses to determine whether site-
related effects are contributing to shortcut learning in a classi-
fier. The simplicity of our approach allows it to be applicable
to any deep learning model task and database, making it
a valuable tool for identifying potential shortcuts in trained
models. Recognizing the origins of shortcuts or biases is vital
for the formulation and examination of applicable mitigation
strategies. In this context, a recent study by Stanley et al. [36]
showed that applying bias mitigation strategies in the absence
of bias can detrimentally impact a model’s performance.
Therefore, using this methodology to help identify biases can
facilitate the selection or development of more targeted bias
mitigation and data harmonization strategies, especially when
dealing with multicenter datasets. Ultimately, ensuring that a
classifier relies on genuine disease effects rather than spurious
correlations is crucial for its clinical utility across diverse
contexts. In a larger context, the results of this study may
explain to some degree why so many deep learning models that
perform well in cross-validation evaluations or based on an
internal test set, fail to achieve a clinical meaningful accuracy
when applied to data from centers that did not contribute any
of the data used for the initial training of deep convolutional
neural networks used for disease classification.

It is essential to highlight some of the limitations of this
work. First, our shortcut investigation approach was based on
adding a single dense layer (’head’) to the penultimate layer of
the frozen PD classifier, leading to a linear analysis. However,
this linear approach also presents an advantage, as it prevented
that the models learn additional complex representations from
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the data and changing the actual feature space of the original
model. Thus, this limitation may also be beneficial for our
ability to detect potential shortcuts in the PD classifier, making
the study more indicative of their presence. Second, it is
important to note that our analysis was focused on a single
established PD classifier model. Hence, the results might differ
when considering other deep learning models or other disease
models. However, it should be noted in this context that the
multicenter database used in this work is comparably large
and was acquired in many centers compared to the data
used for many other deep learning models. It may be argued
that deep learning models trained based on fewer datasets
acquired in a smaller number of centers may be even more
prone to using biases as shortcuts. Third, our study solely
employed one MRI sequence, T1-weighted images, which are
not quantitative. Other image modalities may show more or
less severe non-biological biases that could be exploited as
shortcuts. However, it may be argued that even quantitative
imaging modalities have some technical bias, for example,
due to the reconstruction kernel used, so that the findings of
this work are still widely relevant. Finally, while the shortcut
analysis method employed in this study can be applicable
to other datasets and biases of interest, it is essential to
acknowledge that our research was conducted on a single
disease with only three potential biases being investigated
in detail. Therefore, the findings may not fully represent all
possible scenarios in other contexts, but the same framework
can be used to evaluate different scenarios and biases.

V. CONCLUSION

While advancements in bias mitigation and data harmo-
nization are important methodological contributions that aid
in minimizing biases in trained models and may prevent
potential shortcut learning to some extent, our work highlights
the importance of using more detailed model analyses in
order to determine whether site-related effects are being used
for shortcut learning in a classifier. This can allow for bias
mitigation and data harmonization strategies to be selected
or developed in ways that are more targeted for the specific
task, especially when using multicenter datasets. Overall, it is
crucial that a classifier makes use of true disease effects and
not spurious correlations so that it may be clinically useful in
a broad context.
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