2112.14168v1 [cs.CL] 28 Dec 2021

arxXiv

A Survey on Gender Bias in Natural Language Processing

KAROLINA STANCZAK, University of Copenhagen
ISABELLE AUGENSTEIN, University of Copenhagen

Language can be used as a means of reproducing and enforcing harmful stereotypes and biases and has been
analysed as such in numerous research. In this paper, we present a survey of 304 papers on gender bias in
natural language processing. We analyse definitions of gender and its categories within social sciences and
connect them to formal definitions of gender bias in NLP research. We survey lexica and datasets applied in
research on gender bias and then compare and contrast approaches to detecting and mitigating gender bias.
We find that research on gender bias suffers from four core limitations. 1) Most research treats gender as a
binary variable neglecting its fluidity and continuity. 2) Most of the work has been conducted in monolingual
setups for English or other high-resource languages. 3) Despite a myriad of papers on gender bias in NLP
methods, we find that most of the newly developed algorithms do not test their models for bias and disregard
possible ethical considerations of their work. 4) Finally, methodologies developed in this line of research are
fundamentally flawed covering very limited definitions of gender bias and lacking evaluation baselines and
pipelines. We see overcoming these limitations as a necessary development in future research.

CCS Concepts: » Computing methodologies — Natural language processing; Machine Learning; «
Computing methodologies — Language resources.

Additional Key Words and Phrases: gender bias, survey

ACM Reference Format:
Karolina Stanczak and Isabelle Augenstein. 2021. A Survey on Gender Bias in Natural Language Processing. J.
ACM 1, 1 (December 2021), 35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Gender bias and sexism are explicitly expressed in language and thus, have been analysed both by
the linguistics and natural language processing (NLP) communities [Koolen and van Cranenburgh
2017; Sun et al. 2019]. Since the first publication on gender bias detection in 2004 in the ACL
Anthology!, which indexes papers published at almost all NLP venues, there have been a total of
224 publications aiming an investigation of gender bias, showing a clear upward trend in the number
of papers published every year that has started back in 2015. In particular, previous research has
confirmed gender bias to be prevalent in literature [Hoyle et al. 2019], news [Wevers 2019], media
[Asr et al. 2021], and communication about and directed towards people of different genders [Fast
et al. 2016; Voigt et al. 2018]. Further, prior studies have shown bias in underlying NLP algorithms
such as word embeddings [Bolukbasi et al. 2016] and language models [Nadeem et al. 2021], as
well as in the downstream tasks they are employed for, e.g., machine translation [Savoldi et al.
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2021], coreference resolution [Rudinger et al. 2018; Webster et al. 2018; Zhao et al. 2018a], language
generation [Sheng et al. 2020], and part-of-speech tagging and parsing [Garimella et al. 2019].

However, the rapid increase in research on gender bias has led to a state where the research is
fractured across communities and publications often do not engage with parallel research. Thus,
there is a need to summarise and critically analyse the developments hitherto, to identify the
limitations of prior work and suggest recommendations for future progress. Therefore, in this
paper, we present an overview of 304 papers on gender bias in natural language processing. We
begin with a brief outline our methodology and explore the evolution of the field in popular NLP
venues (§2). Then, we discuss different definitions of gender in society (§3). Further, we define
gender bias and sexism in general and in NLP, in particular, incorporating a discussion of their
ethical considerations (§4). Next, we gather common lexica and datasets curated for research on
gender bias (§5). Subsequently, we discuss formal definitions of gender bias (§6). Then, we discuss
methods developed for gender bias detection (§7) and mitigation (§8).

We find that existing research on gender bias has four main limitations and see addressing these
limitations as necessary future focus areas of research on gender bias. Firstly, despite the wide
range of research across multiple language tasks predominantly only two genders are distinguished,
male and female, neglecting the fluidity and continuity of gender as a variable. Natural language
has started to adopt gender-neutral linguistic forms to recognise non-binary nature of gender such
as singular they in English and hen in Swedish, thus presenting a need for NLP researchers to
incorporate this social development into their datasets and algorithms [Sun et al. 2021]. Otherwise,
modelling gender as a binary variable can lead to a number of harms such as misgendering and
erasure via invalidation or obscuring of non-binary gender identities [Behm-Morawitz and Mastro
2008; Fast et al. 2016]. Addressing this issue is critical not just to improve the quality of our systems,
but more importantly to minimise these harms [Larson 2017].

Secondly, most prior research on gender bias has been monolingual, focusing predominantly on
English or a small number of further high-resource languages such as Chinese [Liang et al. 2020]
and Spanish [Zhao et al. 2020]. Only limited work has been conducted in a broader multilingual
context with notable exceptions of analysis of gender bias in machine translation [Prates et al.
2020] and language models [Stanczak et al. 2021].

Thirdly, despite a plethora of studies showing evidence of presence of systematic gender bias in
prolifically applied NLP methods [Bolukbasi et al. 2016; Nadeem et al. 2021; Nangia et al. 2020],
researchers are not required to test the models they publish with respect to biases they perpetuate.
In particular, still most of the recently published models do not include a study of (gender) bias
and ethical considerations alongside their publication [Conneau et al. 2020; Devlin et al. 2019;
Raffel et al. 2020; Zhang et al. 2020] with the noteworthy exclusion of GPT-3 [Brown et al. 2020]. In
general, these methods are tested for biases only post-hoc when already being deployed in real-life
applications potentially posing harm to different social groups [Mitchell et al. 2019].

Lastly, we argue that methodologies within gender bias detection often lack baselines and do not
engage with parallel research. We find that similarly to research within societal biases Blodgett
et al. [2020], work on gender bias in particular, is fundamentally flawed suffering incoherence in
usage of evaluation metrics. Publications consider often limited definitions of bias that address
only one of many ways gender bias manifests itself in language.

2 METHODOLOGY

The following survey is an overview of all papers identified by the authors on analysing gender
bias in NLP, which spans a total of 304 papers. To collect these relevant papers, the ACL Anthology,
NeurlIPS, and FAccT were queried for all papers with the keywords ‘gender bias’, ‘gender” or ‘bias’
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made available prior to June 2021. Additionally, we expand the spectrum of the papers with relevant
social science publications and other relevant publications cited in the collected papers.

We retained all papers about gender bias and discarded papers focusing on other definitions of
the keywords (e.g., inductive bias, social bias). We review papers analysing gender bias in natural
language and methods presenting an encompassing overview of gender bias in language.
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Fig. 1. Cumulative number of papers published on gender bias prior to June 2021.

We analyse the number of published papers in ACL venues mentioning the selected keywords
either in the title or the abstract of the paper and present the results in Figure 1. We observe a
steady increase in the number of papers since 2015 with notable peaks in 2019 (83 publications)
and 2020 (a total of 107 publications). This trend suggests 2021 might end with another record in
the number of papers on gender bias per year. Indeed, in 2021, we have already identified a total of
40 papers covering the topic of gender bias in NLP. This development demonstrates that the area of
research has established itself within NLP research.

3 GENDER IN SOCIETY AND LINGUISTICS

Definitions of gender used in the linguistics literature vary substantially across subfields and
are often implicit [Ackerman 2019]. Depending on the context, the concept of gender refers to a
person’s self-determined identity and the way they express it, how they are perceived, and others’
social expectations of them [Ackerman 2019; Lucy and Bamman 2021]. Compared to sex, a term
that solely refers to one’s set of physical and physiological characteristics such as chromosomes,
gene expressions, and genitalia, gender is considered a social construct [Butler 1989; Risman 2004].
In particular, Risman [2004] argue gender is a social construct and, as such, has consequences on
person’s individual development, both in interactions and institutional domains.

However, linguistic categories of gender do not map well to social categories [Cao and Daumé III
2020]. Literature on gender in linguistics often distinguishes the following types of gender that are
summarised below. We note that these types are not all-encompassing and merely outline gender
categories presented in the literature.

e Grammatical gender: refers to a classification of nouns based on a principle of a grammatical
agreement into categories. Depending on the language, the number of grammatical gender
classes ranges from two (e.g., masculine and feminine in French, Hindi, and Latvian) to several
tens (in Bantu languages and Tuyuca) [Corbett 1991]. Many of these languages also assign
grammatical gender to inanimate nouns.
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¢ Referential gender: identifies referents as female, male or neuter [Cao and Daumé III 2020].
A very similar concept is described by conceptual gender referred to as a gender that is
expressed, inferred and used by a perceiver to classify a referent [Cao and Daumé III 2020].

e Lexical gender: refers to an existence of lexical units carrying the property of gender, male-
or female-specific words such as father and waitress [Cao and Daumé III 2020; Fuertes-Olivera
2007].

e (Bio-)social gender: refers to the imposition of gender roles or traits based on phenotype,
social and cultural norms, gender expression, and identity (such as gender roles) [Ackerman
2019; Kramarae and Treichler 1985].

Non-binary gender. Since the grammatical, referential, and lexical gender are definitions widely
followed in NLP research, most NLP research that includes gender as a variable in downstream
tasks treats it as a categorical variable with binary values (in English) [Brooke 2019]. However, the
binarisation of gender in computational studies usually does not agree with critical theorists. For
instance, Butler [1989] show how gender is not simply a biological given, nor a valid dichotomy,
and even though many people fit into the binary categories, there are more than two genders [Bing,
Janet and Bergvall 1998]. Thus, gender can be viewed as a broad spectrum.

More recently, natural language started adopting linguistic forms to recognise the non-binary
nature of gender, such as singular they in English, hen in Swedish and hdn in Finnish. These
linguistic forms are not new concepts and were used by native speakers to refer to someone whose
gender is unknown. However, their popularity has increased to denote a person whose gender
is non-binary. The increased popularity of gender-neutral linguistic forms in natural language
presents a challenge to incorporate this social development into the datasets and algorithms [Sun
et al. 2021]. However, some words that are relevant in this discussion such as cisgender and binarism
are either missing or underrepresented in corpora and databases [Hicks et al. 2016].

Determining gender. To include gender as a variable in a NLP method, it often needs to be
determined from the data first since it is often not explicitly given which is generally difficult to
accomplish with high precision.

A popular method to determine gender is to infer it from a person’s name, assuming that this
information is given. In many languages, gender-differentiated names for men and women make
gender assignment possible based on gendered name dictionaries. For instance, in Slavic languages,
the ending of the last name is gender-specific (e.g., with -i vs. -a). On the other hand, gender-neutral
first names are common for Chinese, Turkish, and many other languages. Additionally, names
often have different gender associations depending on the country and language, such as Andrea
being a male name in Italian and a female one in English, German and Spanish. Notably, many of
the primarily Western-based name lists used for determining gender do not always generalise to
names from other countries and cultures [Lucy and Bamman 2021]. Due to these aspects, all of the
above methods of determining gender tend to be imprecise and neglect non-binary genders.

4 GENDER BIAS, SEXISM AND HARMS THEY MAKE

In the following, we state general definitions of gender bias and sexism and distinguish among
their different types. Further, we outline the potential harms they might cause for individuals and
society as a whole.

4.1 Gender Bias

Blodgett et al. [2020] warn that papers about NLP systems developed for the same task often
conceptualise bias differently. Therefore, we state the most common definitions of gender bias in
the following. Gender bias is defined as the systematic, unequal treatment based on one’s gender
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[Sun et al. 2019]. More specifically, Friedman and Nissenbaum [1996] use the term bias to refer
to behaviour that systematically discriminates against specific individuals or groups in favor of
others and distinguish three bias categories: pre-existing bias, technical bias, and emergent bias.
Pre-existing bias arises when computer systems incorporate biases that appear independently
and often prior to the creation of the system [Friedman and Nissenbaum 1996]. It can originate both
from individuals, biased software developers or from society, private or public organizations and
institutions, or especially in case of gender bias — historical and cultural context. Thus, this type
of bias emerges not only through conscious decisions of individuals or institutions but can also
appear unintended. On the other hand, technical bias emerges from models’ technical deign such
as hardware and software limitations. While it is almost always possible to identify pre-existing
bias and technical bias in a system design at the time of creation or implementation, emergent
bias arises when the context the system was used for has changed - due to changes in society,
population, or cultural values (e.g., when social media feeds are influenced by user’s gender).

Further literature outlines reporting and interpretation bias. Reporting bias refers to the phe-
nomenon that the frequency with which situations of a certain type are described in text does
not necessarily correspond to their relative likelihood in the world, or the subjective frequency
captured in human beliefs [Gordon and Van Durme 2013]. On the other hand, interpretation
bias is a phenomenon of researchers assuming that gender is a relevant variable which ultimately
leads to analyses that are incapable of revealing violations of this assumption [Bamman et al. 2014;
Koolen and van Cranenburgh 2017]. The results are not questioned, especially if they align with
common often stereotypical knowledge [Koolen and van Cranenburgh 2017].

4.2 Sexism

Sexism can be defined as discrimination, stereotyping, or prejudice based on one’s sex (as opposed
to one’s gender). According to the ambivalent sexism theory [Glick and Fiske 1996], sexism can be

divided as:

o Hostile: follows the classic definition of prejudice - an explicitly negative sentiment that is
sexist.

e Benevolent: subjectively positive attitude, which is sexist. Despite the seemingly positive
sentiment, benevolent sexism has been shown to affect women’s cognitive performance
stronger than hostile sexism [Dardenne et al. 2007]. For instance, female gender associations
with any word, even a subjectively positive word such as attractive, can cause discrimination
against women if it reduces their association with other words, such as professional. Despite
the positive sentiment of benevolent sexism, it can be backtracked to masculine dominance
and stereotyping.

We note that sexism is considered a subset of hate speech [Waseem and Hovy 2016] and therefore
is often analysed together with other forms of aggression [Safi Samghabadi et al. 2020].

4.3 Harms

Gender bias and sexism result in harms affecting individuals and society as a whole. Recently,
Crawford [2017] present a framework classifying algorithmic biases by the type of harm they cause
and distinguish between allocational and representational harms.

Representational harms refer to portrayals of certain groups that are discriminatory. In gen-
eral, following Crawford [2017] representational harms can be divided into: stereotyping, under-
representation, denigration, recognition, and ex-nomination. Stereotyping, in particular, perpetuates
common (often negative) depictions of a certain gender. Under-representation bias is the dispro-
portionately low representation of a specific group. Denigration refers to the use of culturally or
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historically derogatory terms, while recognition bias involves a given algorithm’s inaccuracy in
recognition tasks. Finally, ex-nomination describes a practice where a specific category or way
of being is framed as the norm by not giving it a name or not specifying it as a category in itself
(e.g., ‘politician’ vs. ‘female politician’). On the other hand, allocational harms refer to the unjust
distribution of opportunities and resources due to algorithmic intervention. They can result in
systematic differences in treatment or denial of a particular service and complete ruling out of
certain groups, for instance in job applications. Allocation bias can be framed as an economic issue
in which a system unfairly allocates resources to certain groups over others, while representation
bias occurs when systems detract from the social identity and representation of certain groups
[Crawford 2017; Sun et al. 2019].

Another harmful outcome of gender bias and sexism presents itself in gender gaps that arise
from these asymmetrical valuations, e.g., where men are typically over-represented and have higher
salaries compared to women [Mitra 2003]. The public sphere is often associated with male and
agents characteristics (assertiveness, competitiveness) in domains like politics and entrepreneurship.
Private or domestic domains linked to family and social relationships are traditionally related to
women, although social relationships are considered more important by people independent of
gender [Friedman et al. 2019].

4.4 Biasin NLP

Above we have introduced gender bias and sexism as general terms. In the following, we discuss
how these biases emerge in natural language and ultimately influence many downstream tasks.

Language can be used as a substantial means of expressing gender bias. Gender biases are
translated from source data to existing algorithms that may reflect and amplify existing cultural
prejudices and inequalities by replicating human behavior and perpetuating bias [Sweeney 2013].
This phenomenon is not unique to NLP, but the lure of making general claims with big data, coupled
with NLP’s semblance of objectivity, makes it a particularly pressing topic for the discipline [Koolen
and van Cranenburgh 2017].

Alongside the types of biases described above, there are forms of bias that apply specifically
in NLP research. In particular, Hitti et al. [2019] define gender bias in a text as the use of words
or syntactic constructs that connote or imply an inclination or prejudice against one gender.
Further, Hitti et al. [2019] note that gender bias can manifest itself structurally, contextually or in
both of these forms. Structural bias arises when the construction of sentences shows patterns
that are closely tied to the presence of gender bias. It encompasses gender generalisation (i.e.,
when a gender-neutral term is assumed to refer to a specific gender-based on some (stereotypical)
assumptions) and explicit labeling of sex. On the other hand, contextual bias manifests itself
in a tone, the words used, or the context of a sentence. Unlike structural bias, this type of bias
cannot be observed through grammatical structure but requires contextual background information
and human perception. Contextual bias can be divided into societal stereotypes (which showcase
traditional gender roles that reflect social norms) and behavioral stereotypes (attributes and traits
used to describe a specific person or gender). Therefore, gender bias can be detected using both
linguistic and extra-linguistic cues, and can manifest itself with different intensities, which can be
subtle or explicit, posing a challenge in this line of research.

Gender bias is known to perpetuate to models and downstream tasks posing harm for the end-
users [Bolukbasi et al. 2016]. These harms can emerge as representational and allocational harms and
gender gaps. Allocation harm is reflected when models often perform better on data associated
with the majority gender. In the context of NLP, this is often the case for machine translation [Sap
et al. 2017] and coreference resolution [Webster et al. 2018] (see §7.3). Representation harm is
reflected when associations between gender with certain concepts are captured in word embeddings
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and model parameters [Sun et al. 2019], for instance, as shown in [Bolukbasi et al. 2016; Zhao et al.
2018b]. On the other hand, gender gap is a phenomenon influencing gender bias in the text. Since
women are underrepresented in most areas of society, it is not surprising that available texts mainly
discuss and quote men [Asr et al. 2021], which leads, for example, to biased corpora researchers
train their models on.

5 RESOURCES

Comprehensive data resources are crucial in probing for gender bias in language. However, many
of the datasets in NLP are inadequate for measuring gender bias since they are often severely
gender imbalanced with a substantial under-representation of female and non-binary instances.
Further, analysing gender bias often requires a dataset of a specific structure or including certain
information to enable proper isolation of the effect of gender [Sun et al. 2019]. Thus, evaluation
on widely-used datasets (e.g., SNLI [Rudinger et al. 2017]) might not reveal gender bias due to
inherent biases encoded in the data, presenting a need in research for targeted datasets for gender
bias detection.

We note that the choice of a dataset is dependent on the considered definition of bias (discussed
in §4) that needs to be targeted specifically, the NLP task at hand, domain, etc. Here, we describe
the most popular publicly available lexica (§5.1) and datasets (§5.2) that have been used to analyse
gender bias in NLP with respect to the above-mentioned aspects.

5.1 Gender lexica

Lexicon matching is an interpretable and technically simple approach, and thus, it has been
frequently adopted by NLP practitioners. In particular, in gender bias detection, lexica representing
genderness, sentiment, and the affect dimensions of valence, arousal, and dominance have been
widely employed since these measures are often used as proxies for bias. In Table 1, we present the
most popular lexica used for gender bias detection, and in the following, we describe measures
they quantify.

Lexicon No. of words Measure
Gender Ladeness Lexicon [Ramakrishna et al. 2015] 10 000 Genderness
Gender Predictive Lexicon [Sap et al. 2014] 7 136 Genderness
Gender Ladeness Lexicon [Clark and Paivio 2004] 925 Genderness
Williams and Best [Williams and Best 1990] 300 Genderness
NRC VAD Lexicon [Mohammad 2018] 20 000 Valence, Arousal and Dominance
Valence, Arousal, and Dominance [Warriner et al. 2013] 13 915 Valence and Dominance
NRC Emotion Lexicon [Mohammad and Turney 2013] 10 170 Emotion and Sentiment
Connotation Frames [Sap et al. 2017] 2155 Power and Agency

Table 1. List of popular lexica used in gender bias research.

5.1.1 Sentiment. Differences in sentiment towards people of different genders have been analysed
in the context of gender bias in numerous papers [Cho et al. 2019; Hoyle et al. 2019; Stanczak et al.
2021; Touileb et al. 2020], which have exploited sentiment lexica for this purpose. Since creating a
comprehensive overview of sentiment lexica is outside the scope of this paper, we refer the reader
to Taboada et al. [2011] for such an overview. However, we note that sentiment is indicative solely
of hostile biases rather than more nuanced ones.

5.1.2 Gender Ladenness. Gender ladenness is a measure to quantitatively represent a normative
rating of the perceived feminine or masculine association of a word [Paivio et al. 1968]. In particular,
this metric indicates the gender specificity of individual words, with extreme values assigned to
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highly stereotypical concepts. For instance, in Ramakrishna et al. [2015]’s lexicon, which is based
on movie scripts, the word bride would be assigned the gender ladenness value of 0.84 on a scale
from -1 (most masculine) to 1 (most feminine). Similarly, Williams and Best [1990] use a list of
pre-selected adjectives, Sap et al. [2014] use words collected on social media, and Clark and Paivio
[2004] select a list of nouns to create a genderness lexicon.

5.1.3 Valence, Arousal, and Dominance. Based on social psychology, NLP research has iden-
tified three primary affect dimensions: power/dominance (strength/weakness), valence (good-
ness/badness), and agency/arousal (activeness/passiveness of an identity) [Field and Tsvetkov 2019].
Since a common stereotype associates female gender with weakness, passiveness, and submissive-
ness, lexica reporting measures for these dimensions are a valuable resource in gender bias analysis,
and going beyond sentiment, they can be applied in unveiling benevolent biases.

5.14 Limitations. By their nature, lexicon approaches are limited to known words [Field et al.
2019], and they assume that the context of the words remains constant [Lucy et al. 2020]. However,
collecting exhaustive lexica can be very resource-consuming since they rely on human-generated
annotations [Lucy et al. 2020]. Moreover, we note that all the lexica listed in Table 1 are created
solely for English. There has been very little research enabling multi-lingual gender bias analysis
employing lexica, with the notable exception of Stanczak et al. [2021].

5.2 Datasets

Dataset Size Data Gender Task Bias
EEC [Kiritchenko and Mohammad 2018] 8 640 sent. sent. templates b SA  stereotyping
WinoBias [Zhao et al. 2018a] 3 160 sent. sent. templates nb cor. res. occ. bias
WinoGender [Rudinger et al. 2018] 720 sent. sent. templates b cor. res. occ. bias
WinoMT [Stanovsky et al. 2019] 3 888 sent. sent. templates b MT occ. bias
Occupations Test [Escudé Font and Costa-jussa 2019] 2 000 sent. sent. templates b MT occ. bias
GAP [Webster et al. 2018] 8908 ex. Wikipedia b cor. res. stereotyping
KNOWREF 8724 sent. Wikipedia & other b cor. res. stereotyping
BiosBias [De-Arteaga et al. 2019] 397 340 bios CommonCrawl b classification occ. bias
GeBioCorpus 2000 sent. Wikipedia b MT occ. bias
StereoSet [Nadeem et al. 2021] 2022 sent. human-generated b probing LMs stereotyping
CrowS-Pairs 1508 ex.  human-generated b probing LMs stereotyping

Table 2. List of common probing datasets for gender bias in language.

In order to measure gender bias in NLP methods and downstream applications, a number of
datsets have been developed. We list the well-established datasets in Table 2 together with the tasks
they can probe and biases they provide a testbed for. Below we discussed three groups of datasets:
those based on simple template structures, those based on natural language data, and datasets that
have been developed to detect gender bias in language models.

5.2.1 Template-Based Datasets. A number of studies accounting for gender bias in natural language
processing have been conducted on benchmark datasets consisting of template sentences of simple
structures such as “He/She is a/an [occupation/adjective].” where [person/adjective] is populated
with occupations or positive/negative descriptors [Bhaskaran and Bhallamudi 2019; Cho et al. 2019;
Prates et al. 2020; Saunders and Byrne 2020]. Similarly, the EEC dataset Kiritchenko and Mohammad
[2018] includes sentence templates such as [Person] feels [emotional state word]. and The [person] has
two children. The EEC dataset has been widely used in other projects [Bhardwaj et al. 2021] and has
been extended with German sentences by Bartl et al. [2020]. Another multilingual dataset has been
proposed by Nozza et al. [2021] that create a template-based dataset in 6 languages (English, Italian,
French, Portuguese, Romanian, and Spanish) similarly consisting of a subject and a predicate.
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Another strain of work has utilised the structure of Winograd Schemas [Levesque et al. 2012]:
WinoBias [Zhao et al. 2018a], WinoGender [Rudinger et al. 2018], and WinoMT [Stanovsky et al.
2019]. Since Winograd Schema Challenge is a coreference resolution task with human-generated
sentence templates which requires reasoning with commonsense knowledge, it has been employed
to analyse if reasoning of coreference system is dependent on a gender of a pronoun in a sentence
and to measure stereotypical and non-stereotypical gender associations for different occupations.

WinoBias [Zhao et al. 2018a] contains two types of sentences that require the linking of gendered
pronouns to either male or female stereotypical occupations. None of the examples can be disam-
biguated by the gender of the pronoun, but this cue can potentially distract the model. The WinoBias
sentences have been constructed so that, in the absence of stereotypes, there is no objective way to
choose between different gender pronouns. In parallel, Rudinger et al. [2018] develop a WinoGender
dataset [Levesque et al. 2012]. As in the WinoBias dataset, each sentence contains three variables:
occupation, person and pronoun. For each occupation, Winogender includes two similar sentence
templates: one in which pronoun is coreferent with occupation, and one coreferent with person.
Notably, WinoGender sentences unlike WinoBias also include gender-neutral pronouns. Finally,
sentences in WinoGender are not resolvable from syntax alone, unlike in the WinoBias dataset,
which might enable better isolation of the effect of gender bias. Both of these datasets have been
employed in a number of analysis on gender bias in coreference resolution [de Vassimon Manela
et al. 2021; Jin et al. 2021; Tan and Celis 2019; Vig et al. 2020].

Building on WinoGender and WinoBias, Stanovsky et al. [2019] curate WinoMT, a probing
dataset for machine translation, with sentences with stereotypical and non-stereotypical gender-
role assignments. WinoMT has become widely applied as a challenge dataset for gender bias
detection in MT systems [Basta et al. 2020; Renduchintala et al. 2021; Saunders and Byrne 2020;
Stafanovics et al. 2020] with Saunders et al. [2020] developing a version of the WinoMT dataset
with binary templates filled with singuar they pronoun. Similarly, the Occupations Test dataset
[Escudé Font and Costa-jussa 2019] contains template sentences to test MT systems on. Ultimately,
both Occupations Test and WinoMT test if the grammatical gender of the translation is aligned
with the gender of the pronoun in the original sentence which limits the aspects of gender bias
they can probe for.

5.2.2  Natural Language Based Datasets. Probing datasets utilise also available natural language
resources and extend them with annotations to tune it for the gender bias detection task. Importantly,
these datasets can be applied to analyse gender bias in natural language and in algorithms, and are
not limited by artificial structures of the template-based approaches to collecting data.

A number of popular datasets rely on data collected from Wikipedia. For instance, GAP [Webster
et al. 2018] is a human-labeled corpus derived from Wikipedia including sentences relevant for
coreference resolution task. Unlike WinoGender and WinoBias, GAP focuses on relations where
the antecedent is a named entity instead of pronouns [Webster et al. 2018] and thus, can be used
to unravel biases towards entities. Similarly, to analyse gender bias in coreference resolution,
Emami et al. [2019] develop the KNOWREF dataset, which is scraped from Wikipedia together
with OpenSubtitles, and Reddit comments. Then, after initial filtering they infer the genders of
antecedents based on their first names and ask human annotators to predict which antecedent was
the correct coreferent of the pronoun. Due a relatively large size of these datasets, both GAP and
KNOWREF can be used as an alternative to sentence template based datasets.

Another line of work is analysing gender bias in biographies. [De-Arteaga et al. 2019] develop
the BiosBias dataset, which consists of biographies with labelled occupations and gender identified
within Common Crawl. The dataset has been created for the task of correctly classifying the
subject’s occupation from their biography assuming that there are differences between mens’
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and womens’ online biographies other than gender indicators De-Arteaga et al. [2019]. Further,
GeBioCorpus [Costa-jussa et al. 2020] present a dataset with biography and gender information
from Wikipedia which has been widely used to analyse gender bias in MT (for English, Spanish,
and Catalan) [Basta et al. 2020; Escudé Font and Costa-jussa 2019; Vanmassenhove et al. 2018].

Datasets employ also other online data sources. For instance, RtGender [Voigt et al. 2018] is
a dataset of online communication to enable research in communication directed to people of
a specific gender. Studies on detecting misogynist or toxic language on social media released
Twitter-based datasets [Anzovino et al. 2018; Hewitt et al. 2016]. Bentivogli et al. [2020] develop
MuST-SHE, a multilingual benchmark based on TED data for gender bias detection in machine and
speech translation. Recently, Marjanovic et al. [2021] create a dataset with Reddit comments to
study gender biases that appear in online political discussion.

5.2.3 Probing Language Models. A significant, though relatively recent and thus undiscovered,
research direction has concentrated on analysing gender bias in language models. To this end,
specific datasets have been curated. In particular, Nadeem et al. [2021] present StereoSet, which is
a dataset to measure stereotypical biases in gender, among other domains. It consists of triplets of
sentences with each instance corresponding to a stereotypical, anti-stereotypical or a meaningless
association. This dataset enables ranking language models based on probabilities they assign to each
of these triplets. In parallel, Nangia et al. [2020] introduce CrowS-Pairs, a crowdsourced, template-
based challenge set for measuring social biases, including gender bias, that are present in current
language models. In CrowS-Pairs, each example consists of a pair of sentences, a stereotypical and
anti-stereotypical. Both of these datasets are a significant starting point for creating a benchmark
for evaluating gender bias in language models. Notably, Staniczak et al. [2021] propose a method
for generating multilingual datasets for analysing gender bias towards named entities in LMs.

5.3 Summary

Above we have discussed popular datasets employed for analysing gender bias. We note that datasets
based on simple template structures allow for a controlled experiment environment. However, we
warn that the limitations they impose might include artificial biases, and the results of models tested
on them may not map to a more natural environment. Since the above datasets provide means of
conducting diagnostic tests for gender bias, they have a high positive and low negative predictive
value for the presence of gender bias [Rudinger et al. 2018]. Therefore, using these datasets, it is
only possible to demonstrate the presence of gender bias in a system but not to prove its absence.
Although datasets based on natural language obviate the downsides of the benchmark datasets with
simple patterns, they often concentrate on data from one domain, e.g., social media, Wikipedia, or
news. Therefore, the results might not generalise well to other domains and should be treated with
caution. We note that natural language data might encode gender bias itself so that it is impossible
to isolate bias from the data and the tested model. For instance, Chaloner and Maldonado [2019]
find evidence of bias in word embeddings trained on the GAP dataset when testing on a standard
bias benchmark. They assume that this is due to gender bias on Wikipedia, GAP’s underlying data.

However, irrespectively if based on natural language or sentence templates, most of these lexica
and datasets are only available for English. Only datasets to analayse gender bias in machine
translation, due to the nature of the task, are available in other languages. However, they often
consider high-resource languages such as Spanish or German. Similarly, most of these datasets
restrict themselves to the binary view on gender presenting a major gap in the research. Thus,
we encourage data collection for gender inclusive task-specific datasets. Further, many of the
popular publications have focused solely on occupational biases without accounting for a nuanced
nature of gender bias. Finally, despite a number of datasets curated specifically to assess for gender
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bias, only a few can be considered as benchmarks for a targeted downstream task and they come
predominantly from the machine translation and coreference resolution domain. Therefore, we
strongly encourage further research along the lines of establishing evaluation benchmarks for the
underlying models such as Nadeem et al. [2021]; Nangia et al. [2020].

6 DEFINING BIAS

In the following, we list the common formal definitions of bias that are utilised to quantify the
social concepts presented in Section 4 and divide them into definitions used for detecting gender
bias in language (§6.1), either natural or generated, and in NLP methods (§6.2).

6.1 Measuring Gender Bias in Language

Gender bias manifests itself in texts in many ways and can be identified using both linguistic and
extra-linguistic cues [Marjanovic et al. 2021]. Already structure of the data, e.g., the distribution of
genders mentioned in the text, can be a bias indicator and the differences in these distributions can
be used as a measure for bias. However, in the following, we focus on more complex textual biases,
i.e,, lexical biases, and discuss measures for quantifying differences in portrayals of genders, and
their stereotypical depictions.

6.1.1 Differences in Gender Descriptions. Differences in depictions of men and women have been
prolificly quantified using point-wise mutual information (PMI) [Hoyle et al. 2019; Rudinger et al.
2017; Stanczak et al. 2021]. In particular, PMI investigates the co-occurrence of words with a
particular gender. In PMI descriptors (such as adjectives or verbs) linked to a gendered entity are
counted and the probability of their co-occurrence to a gender across entity is calculated. More
formally, PMI is defined as:

P(gender, word)
P(gender)P(word)

In general, words with high PMI values for one gender are suggested to have a high gender bias.
However, Rudinger et al. [2017] note that bias at the level of word co-occurrences is likely to lead
to overgeneralisation when applied to a heterogenous dataset. Notably, PMI can also be used to
measure differences in word choice for genders beyond the binary [Stariczak et al. 2021].

Further, Hoyle et al. [2019] extend the PMI approach and propose an unsupervised model that
jointly represents descriptors with their sentiment to investigate gender bias in words used to
describe men and women together with word’s sentiment.

PMI(gender, word) = In (1)

6.1.2  Stereotypical and Occupational Bias. Occupational gender segregation and stereotyping is
a major problem in the labor market often caused by gender roles and stereotypes present in
society and as such has been in focus in a numerous research [Lu et al. 2020]. To this end, Qian
[2019] calculate an overall stereotype score of a text as the sum of stereotype scores of all the by
definition gender-neutral words with gendered words in the text, divided by the total count of
words calculated. Then, Qian [2019] define the gender stereotype score of a word:

c(word, m)

bias(word) = 'log c(word, )

where f is a set of female words (e.g., she, girl, and woman), and c¢(word, g) is the number of times
a gender-neutral word co-occurs with gendered words. A word is used in a neutral way, if the
stereotype score is 0, which means it occurs equally frequently with male words and females word
in the text. Qian [2019] assess occupation stereotypes score in a text as the average stereotype score
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of a list of gender-neutral occupations in the text. This definitions of stereotypical and occupational
bias have been employed in subsequent research [Bordia and Bowman 2019; Qian et al. 2019].

6.2 Measuring Gender Bias in Methods

With the prevalence of NLP systems and their increasing application areas, researchers have
developed measures to probe for gender biases encoded in these methods. In the following, we
discuss different definitions used for bias detection in NLP methods.

6.2.1 Bias influencing Performance. For downstream tasks where there exists a gold gender, re-
searchers have utilised performance-based measures to quantify bias. In particular, these measures
are relevant for applications such as machine translation and coreference resolution where the
objective involves the correct handling of gendered (pro-)nouns.

Then, the amount of bias encoded in NLP systems can be quantified using: accuracy (percentage
of observations with the correctly gendered entity) [Saunders and Byrne 2020]; difference in
accuracy between the set of sentences with anti-stereotypical and stereotypical sentences; F; score
and difference in F; score between the stereotypical and anti-stereotypical gender role assignments
[de Vassimon Manela et al. 2021; Webster et al. 2018; Zhao et al. 2018a]; log-loss of the probability
estimates [Webster et al. 2019]; false positive rates [Jin et al. 2021; Kennedy et al. 2020]; ratio of
observations with masculine and feminine predictions; gender differences in distributions of and
within occupations Kirk et al. [2021].

Depending on the downstream task, task-specific performance measures are used to evaluate
gender bias. For instance, to assess gender bias in dependency parsing, the labeled attachment score
that measures the percentage of tokens that have a correct assignment and the correct dependency
relation has been applied [Garimella et al. 2019]. Next, BLEU is used in machine translation to assess
the quality of the translated text [Saunders and Byrne 2020]. If the MT system is gender biased, the
system produces an incorrect gender predicition even when no ambiguity exists [Costa-jussa and
de Jorge 2020]. Thus, the lower the bias, the better the translation quality in terms of BLEU score
and accuracy [Basta et al. 2020; Escudé Font and Costa-jussa 2019; Stanovsky et al. 2019]. However,
Bentivogli et al. [2020] point out that previously obtained BLEU gains [Moryossef et al. 2019;
Vanmassenhove et al. 2018] cannot be ascribed with certainty to a better control of gender features
and following previous research [Elaraby et al. 2018; Vanmassenhove et al. 2018] underlie the
importance of applying gender-swapping in BLEU-based evaluations focused on gender translation.

6.2.2 Stereotypical Bias. Another stream of research attempts to quantify gender bias in terms
of stereotypical associations that a method conveys. For instance, Zhao et al. [2018a] consider a
system gender biased if it links pronouns to occupations more accurately for the stereotypical
pronoun, rather than the anti-stereotypical one. Next, in order to assess stereotypical associations
encoded in NLP methods, Kurita et al. [2019] suggest to measure how much more a model prefers
the male association with a certain attribute, e.g., a programmer, compared to the female gender.
To this end, Kurita et al. [2019] propose to create template sentences, similar to the ones discussed
in §5.2.1, and calculate a log probability bias score for BERT predictions when filling in a template
with the gendered words and the target word. This measure has been widely applied in numerous
research [Bartl et al. 2020; Vig et al. 2020]. Building up on this approach, Munro and Morrison
[2020] calculate the ratio of the actual probabilities instead of log probabilities, claiming that ratios
allow for more transparent comparisons.

For datasets where each instance contains at least two versions of the same template sentence, e.g.,
male and female, the paired t-test has been used to measure if the mean predicted class probabilities
are different across genders [Bhaskaran and Bhallamudi 2019; Kiritchenko and Mohammad 2018].
Similarly, Nangia et al. [2020] propose a metric that calculates the percentage of examples for which
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the language model is in favor of the more stereotyping sentence. To measure this, Nangia et al.
[2020] first break each sentence in an example into two parts: the modified tokens that appear only
in one of the sentences and the unmodified part that is shared. Then, using pseudo-log-likelihood
masked language model scoring [Salazar et al. 2020], they estimate the probability of the unmodified
tokens conditioned on the ones.

Due to their simplicity and interpretability the above measures have been widely adopted to
measure gender bias. However, these methods cover only stereotypical bias neglecting many other
ways in which gender bias can be expressed.

6.2.3 Causal Bias. Causal testing presents another way of measuring gender bias in NLP systems.
Then, gender bias is defined as the disparity in the output when model is feeded with different
genders [Qian et al. 2019]. Lu et al. [2020] define bias as the expected difference in scores assigned
to expected absolute bias across different genders. Later, Qian et al. [2019] limit the above bias
evaluation to a set of gender-neutral occupations and measure how the probabilities of occupation
words depend on the gendered word and in reverse, how the probabilities of gendered wordsdepend
on the occupation words. Similarly, Emami et al. [2019] propose consistency as a bias metric, where
they duplicate the dataset by switching the candidate antecedents each time they appear in a
sentence. If a coreference model relies on knowledge and contextual understanding, its prediction
should differ between the two versions. Emami et al. [2019] define the consistency score as the
percentage of predictions that change from the original instances to the switched instances.
Causal testing in gender bias detection has been used to define bias in terms of stereotypical
bias, rather than approaching other possible harms, which sets a possible ground for future work.

6.2.4 Male Default. Gender bias can be defined as the deviation of the distribution of gender
pronouns in an output of an NLP system from a gender distribution of demographics of an occu-
pation [Prates et al. 2020]. These differences occur more often in a presence of the male default
phenomenon (§4). Especially in machine translation systems, male defaults lead to overestimating
the distribution of male instances over female ones.

To account for male default in MT, Cho et al. [2019] propose a translation gender bias index
(TGBI) and apply it to Korean-English translations. Let p{ be the portion of a sentence translated
to a female pronous, p!" as male and p} as gender-neutral pronouns in any set of sentences S; € S.

1 v f
TGBI = ;; pi Py + ]

where p{ +p+p? = 1land p{, P, p?t € [0,1] for each i. TGBI is equal to 1 in optimum when all the
predictions incorporate gender-neutral terms. Cho et al. [2019] expect TGBI to be a representative
measure for inter-system comparison, especially if the gap between the systems is noticeable.
Recently, Ramesh et al. [2021] extend TGBI to Hindi. In general, this is a suitable method for
applications where male default is the predominant risk.

6.2.5 Bias in Word Embeddings. In recent years, a myriad of publications have approached quanti-
fying bias in word embeddings. In the following, we present the according to our judgement most
influential research in this field.

Projection-Based Measures. In the initial work on gender bias in word embeddings, Bolukbasi
et al. [2016] distinguish between two types of bias, direct and indirect. Following Bolukbasi et al.
[2016] direct bias of a word embedding W can be quantified as:

1
DirectBias, = —— = Z | cos(w,g) |°
| | weN
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where N is a set of gender neutral words, g is the gender direction and ¢ is a parameter determining
how strict bias is defined. The direct bias manifests itself in relative similarities between gendered
and gender-neutral words. However, since gender bias could also affect the relative geometry
between gender neutral words themselves, Bolukbasi et al. [2016] introduce notion of indirect
gender bias which manifests as associations between gender neutral words that are arising from
gender. In particular, if word such as businessman and genius are closer to football, a word with an
embedding closer in the gender subspace to a man, it can indicate indirect gender bias. However,
Gonen and Goldberg [2019] argue that the indirect bias has been disregarded to some extent and
complain that mitigation methods are not provided.

Another researched distance-based metric to measure gender bias in word embeddings uses the
relative norm distance between two groups [Garg et al. 2018]:

d= 3" llom = 01ll2 = llom — 02l

UmEM

where M is the set of neutral word vectors and v; is the average vector for group i. The more
positive (negative) that the relative norm distance is, the more associated the neutral words are
towards group two (one). Thus, the above metric captures the relative distance (i.e., relative strength
of association) between the group words and the neutral word list of interest. Similarly, Friedman
et al. [2019] compute bias as the average axis projection of a neutral word set onto the male-female
axis and evaluate it for any region’s word embedding computing its correlation to gender gaps.

Since the above definitions are straightforward and geometrically grounded, they have been
often employed to quantify gender bias in word embeddings. However, bias is much more profound
and systematic than the projection of words [Gonen and Goldberg 2019].

Word Embedding Association Test (WEAT). The WEAT has been developed as a benchmark for
testing gender bias in word embeddings via semantic similarities. In particular, the WEAT compares
set of target concepts (e.g., male and female words) denoted as X and Y (each of equal size N),
with a set of attributes to measure bias over social attributes and roles (e.g., career/family words)
denoted as A and B. The resulting test statistics is defined as a permutation test over X and Y:

S(X,Y, A, B) = [meanycxsim(x, A, B) — meanycysim(y, A, B)]
where sim is the cosine similarity. The resulting effect size is then the measure of association:

—_ S(X’ Y’A’ B)
B stdrexuys(t, A, B)

The null hypothesis suggests there is no difference between X and Y in terms of their relative
similarity to A and B. In Caliskan et al. [2017], the null hypothesis is tested through a permutation
test, i.e., the probability that there is no difference between X and Y (in relation to A and B) and
therefore, that the word category is not biased. However, we note that results obtained with WEAT
should be treated with a grain of salt since Ethayarajh et al. [2019] prove that WEAT systematically
overestimates bias.

Sentence Embedding Association Test (SEAT). Based on the WEAT, May et al. [2019] develop an
analogous method, SEAT, that compares sets of sentences, rather than words. In particular, May
et al. [2019] apply WEAT to the sentence representation. Thus, WEAT can be seen as a special case
of SEAT in which the sentence is a single word. To extend a word-level test to sentence contexts,
May et al. [2019] slot each word into each of several semantically bleached sentence templates.
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Bias Amplification. Previous research has shown that NLP models are able not only to perpetuate
biases extant in language, but also to amplify them [Zhao et al. 2017]. In particular, Zhao et al.
[2017] interpret gender bias as correlations that are potentially amplified by the model and define
gender bias towards a man for each word as:

c(word, man)

)

b d’ =
(wor man) c(word, man) + C(WOrd, Woman)

where c(word, man) is the number of occurrences of a word and male gender in a corpus. If
b(word, man) > 1/|G| (G = {man, woman} under gender binarity assumption), then a word is
positively correlated with gender and may exhibit bias. To evaluate the degree of bias amplification,
Zhao et al. [2017] propose to compare bias scores on the training set, b* (word, man), with bias
scores on an unlabeled evaluation set. We note that this method is applicable solely to individual
words and would require an extension to be used as a general evaluation metric.

6.2.6 Qualitative Assessment. Alongside the above discussed quantitative gender bias measures,
some research includes qualitative measures to analyse the extent of gender bias. For instance,
Moryossef et al. [2019] conduct a syntactic analysis of generated translations examining inflection
statistics for sentence templates from the dataset. Escudé Font and Costa-jussa [2019] introduce
clustering as a measure of gender bias. Then, the higher the clustering accuracy for stereotypically-
gendered words, the more bias the word embeddings trained on the dataset have. We find this line
of work particularly interesting as it encourages better model understanding and interpretability.

6.3 Summary

Gender bias can be expressed in language in many nuanced ways which poses stating a comprehen-
sive definition as one of the main challenges in this research field. In this section, we have examined
different gender bias definitions. We find that they vary dramatically across and within algorithms
and tasks, which supports findings made by Blodgett et al. [2020] that analyse bias definitions in
general. Bias is often described only implicitly without any formal definition. Even when a paper
states a formal definition, it essentially covers only one type of bias which oversimplifies the task
and thus, makes it impossible to detect all harmful signals in language. In particular, we discuss a
number of methods to quantify bias in word embeddings which are utilised in many downstream
tasks. However, most of them consider only one way of defining bias and do not engage enough
parallel research to combine these methods. We here support [Silva et al. 2021]’s claim that solely
using one bias metric or test is not enough — diversifying metrics to ensure robustness of the
evaluations is thus important. Additionally, we strongly encourage developing standard evaluation
measures and tests to enhance comparability.

Another limitation we see is that defining bias in terms of decreasing performance, however
straight-forward, carries a risk of capturing bias only as long as it influences the performance.
This way bias detection is only a means of enhancing model’s performance instead of being a goal
on its own which can raise ethical considerations. Moreover, some of the performance measures
have been previously criticised as evaluation benchmarks for tasks they address. For instance, it is
widely acknowledged in machine translation that BLEU score is a coarse and indirect indicator of a
machine translation system’s performance [Callison-Burch et al. 2006].

Finally, similarly to our observations regarding datasets, most of the measures developed for
quantifying gender bias are created and calculated only for binary genders. Even if a specific metric
allows for analysing non-binary genders, it usually remains unmentioned.
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7 DETECTING GENDER BIAS

Armed with datasets (§5) suitable for gender bias analysis and formal gender bias definitions (§6), we
focus herein on research on detecting and analysing the nature of gender bias in natural language,
NLP algorithms, and downstream tasks. We discuss its challenges, and influential lines of work.

7.1 Detecting Gender Bias in Natural Language

Natural language is known to exhibit societal biases. Gender bias, in particular, has been studied in
a broad spectrum of texts such as portrayals of characters in movies, books, news and media.

Choueiti et al. [2014]; Ramakrishna et al. [2015, 2017] examined gender differences in portrayal
of characters in movies and consistently show that female characters appear to be more positive in
language use with fewer references to death and fewer swear words compared to male characters.
However, Sap et al. [2017] find that, high-agency women frames are rare in modern films. Rashkin
et al. [2018] use commonsense inference tasks on movie scripts’ corpus to unveil presence of
gender bias finding that women’s looks and sexuality are highlighted, while men’s actions are
motivated by violence, with strong negative reactions. Moreover, Bamman and Smith [2014]
employ a probabilistic latent-variable model to extract event classes from biographies and find
that characterisation bias on Wikipedia with biographies of women containing significantly more
emphasis on events of marriage and divorce than biographies of men. Field and Tsvetkov [2019]
show that although powerful women are frequently portrayed in the media, they are typically
described as less powerful than their actual role in society. However, Asr et al. [2021] report that
there, in fact, is a gender gap in coverage of women in Canadian news outlets. Further, Hoyle
et al. [2019] use an unsupervised model to find that differences between descriptions of males and
females in literature align with common gender stereotypes: Positive adjectives used to describe
women are more often related to their bodies than adjectives used to describe men.

However, Garg et al. [2018] show that gender bias has decreased in the last 100 years and that
the women’s movement in the 1960s and 1970s had a significant effect on women’s portrayals in
literature and culture. To this end, Garg et al. [2018] use word embeddings as a tool to observe the
development of adjectives associated with men and women. This is possible since word embeddings
learn harmful associations and stereotypes from the underlying data and thus, may serve as a
means to extract implicit gender associations from a corpus to detect gender associations present
in society [Bolukbasi et al. 2016]. Similarly, Wevers [2019] show that word embeddings can be
used to investigate shifts in language related to gender, while Friedman et al. [2019] prove that
word embeddings are able to characterise and predict statistical gender gaps in education politics,
economics and health across cultures.

A number of research has investigated differences in language directed towards men and women.
For instance, Tsou et al. [2014] find that comments on TED talks are more likely to be about the
presenter than the content if the presenter is a woman. Fu et al. [2016] analyse questions directed
at male and female tennis players, finding that questions to men are rather about the game while
questions directed at women are often about their appearance and relationships. Further, Voigt
et al. [2018] corroborate the former findings, such as remarks on appearance being more often
targeted towards women, responses to women being more emotive (non-neutral sentiment) and of
higher sentiment in general which can be ascribed to benevolent sexism.

While the above research unveils some of the ways gender bias is manifested in natural language,
it gives only a limited view since most of this research has concentrated on binary gender identities
and was mostly conducted in English. We note that there exist real-life applications with societal
implications to algorithms detecting gender bias in natural language such as warning systems
classifying texts as biased to notify readers.
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7.2 Detecting Gender Bias in Methods

Biased datasets used in the training process are the primary source of gender bias in NLP methods
[Zhao et al. 2017]. Tan and Celis [2019]; Zhao et al. [2019] examine datasets that were used as
training corpora for the popular NLP methods and find that the occurrence of male pronouns is
consistently higher across all datasets and evidence of stereotypical associations. These gender
imbalances lead to gender bias in the NLP systems, such as coreference resolution Zhao et al.
[2018a]. It has been shown that the level of bias encoded in a model differs depending on the
training data. For instance, Chaloner and Maldonado [2019] study differences in bias in a number
of word embeddings trained on corpora from four domains showing the lowest bias in word
embeddings trained on a biomedical corpus and the highest bias when trained on news data (higher
than social media and Wikipedia-based corpus). Surprisingly, Lauscher and Glavas [2019]’s findings
confirm that gender bias seems to be less pronounced in embeddings trained on social media texts.

A common phenomenon leading to gender bias is a generic masculine pronoun which arises
when the masculine form is taken as the generic form to designate all persons of any gender. This is
especially the case in the gendered languages [Carl et al. 2004]. Generic masculine poses a challenge
in text interpretation since it is unclear if a given person denotation refers to a particular person or
a generic form to describe all people in a specific group. For instance, in a sentence “A researcher
must always test his model for biases.”, it is ambiguous if a particular researcher is considered or
researchers in general. In particular, Hitti et al. [2019] analyse data from Project Gutenberg and
IMDB to identify such gender generalisations and detect that even 5% of each corpus is affected.

Due to simple interpretation and ability to capture gender stereotypes occupation words have
become a common domain for gender bias detection [Garg et al. 2018]. Bolukbasi et al. [2016] project
the occupation words onto the she-he axis and find that the projections are strongly correlated
with the stereotypicality estimates of these words, suggesting that the geometric bias of word
embeddings is aligned with crowd judgment of gender stereotypes. Sahlgren and Olsson [2019] show
that male names are on average more similar to stereotypically male occupations with an according
observation applying to female names. Rudinger et al. [2018] demonstrate how occupation-specific
bias is correlated with employment statistics and often so magnified.

Although the majority of the research has focused on analysing gender bias in methods developed
on English corpora, there have been some advances in extending this line of work to other languages.
Developing language-specific methods to assess language model’s limitations is crucial to prevent
bias propagation to downstream tasks in the analysed language [Bartl et al. 2020; Sun et al. 2019].
Findings made for English do not automatically extend to other languages, especially if those exhibit
morphological gender agreement [Nozza et al. 2021]. In particular, gender bias in word embeddings
of languages with grammatical gender can be expressed in different ways, such as in a discrepancy
in semantics between the masculine and feminine forms of the same noun in word embeddings.
For example, it has been shown that when aligning Spanish to English word embeddings, the word
“abogado” (male lawyer) is closer to “lawyer” than “abogada” (female lawyer) [Zhou et al. 2019].
Interestingly, Lauscher and Glavas [2019] find that the level of bias in cross-lingual embedding
spaces can roughly be predicted from the bias of the corresponding monolingual embedding spaces.

Model architecture is analysed as one of the influencing factors for bias in algorithms. For
instance, Lauscher and Glavas [2019] hypothesise that the bias effects reflected in the distributional
space depend on the preprocessing steps of the embedding model. Additionally, discovering bias
in transformer models has proven to be more nuanced than bias-discovery in word embedding
models [Kurita et al. 2019; May et al. 2019]. Nadeem et al. [2021] hyphotesise that an ideal language
model should not only be able to perform the task of language modeling, but also cannot exhibit
stereotypical bias — it should avoid ranking stereotypical contexts higher than anti-stereotypical
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contexts. Recent research has aimed to rank language models in terms of bias they perpetuate
[Nangia et al. 2020; Silva et al. 2021]. However, these studies present partially contradictory results
presenting a need for more exhaustive testing. The influence of the model’s size on the encoded
(gender) bias has been examined. For instance, Silva et al. [2021] find that distilled models almost
always exhibit statistically significant bias and that the bias effect sizes are often much stronger
than in the original models. Vig et al. [2020] show that gender bias increases with the size of a
model. Recently, Bender et al. [2021] confirm this claim warning from potential risks associated
with large language models. However, in a study of gender bias in cross-lingual language models
Stanczak et al. [2021] do not find significant results to support this claim.

It is difficult to understand the nature of biases encoded in large language models due to their
complexity. However, applying interpretability methods can shed light on the models and biases
preserved. For instance, Vig [2019] use visualisations to reveal attention patterns generated by GPT-
2 in the task of conditional language generation and show that the model’s coreference resolution
might be biased. Vig et al. [2020] probe neural models to analyse the role of individual neurons and
attention heads in mediating gender bias and find out that the source of gender bias is concentrated
in a small part of the model. Moreover, Bhardwaj et al. [2021] identify gender informative features
(and discard them from the model as a mitigation technique).

Until now research has aimed to detect gender bias in a strictly binary setting. We want to
highlight the importance of a gender-inclusive research and discuss below publications that have
step up to this task. Hicks et al. [2015] collect a data set and develop visualisation tools that show
relative frequency and co-occurrence networks for American English trans words on Twitter.
Manzini et al. [2019] extend the method presented in Bolukbasi et al. [2016] and use their approach
to find non-binary gender bias by aggregating n-tuples instead of gender pairs. Saunders et al.
[2020] explore applying tagging to indicate gender-neutral referents in coreference sentences with
a gender-neutral pronoun. Recently, Vig et al. [2020] test the probability of a model to generate
the pronoun they for a number of templates. The probability of the pronoun they is relatively low,
however constant across probed professions.

7.3 Detecting Gender Bias in Downstream Tasks

Bias in the above methods influences many downstream tasks for which these methods are used,
which presents a risk of propagating and amplifying gender bias [Zhao et al. 2017, 2018a]. Thus, in
the following, we analyse literature on gender bias in downstream applications.

Machine Translation. Popular online machine learning services, such as Google Translate or
Microsoft Translator, were shown to exhibit biases and to default to the masculine pronoun [Es-
cudé Font and Costa-jussa 2019]. NLP models may learn associations of gender-specified pronouns
(for a gendered language) and gender-neutral ones for lexicon pairs that frequently collocate in the
corpora [Cho et al. 2019]. This kind of phenomenon threatens the fairness of a translation system
since it lacks generality and inserts social bias to the inference. Moreover, the output is not fully
correct (considering gender-neutrality) and poses ethical considerations.

When translating from a language without grammatical gender to a gendered one, the required
clue about the noun’s gender is missing which poses a challenge for MT systems. Saunders et al.
[2020] find that existing approaches tend to overgeneralise and incorrectly use the same inflection
for every entity in the sentence. However, gender is incorrectly predicted not only in the absence
of the gender information. MT methods produce stereotyped translations even when gender
information is present in the sentence. Schiebinger [2014] argue that scientific research fails to take
this issue into account. Recently, Prates et al. [2020] show that Google Translate still exhibits a strong
tendency towards male defaults, in particular for fields typically associated with unbalanced gender
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distribution or stereotypes such as STEM (Science, Technology, Engineering, and Mathematics)
jobs. Prates et al. [2020] hypothesise that gender neutrality in language and communication leads
to improved gender equality. Thus, translations should aim gender-neutrality, instead of defaulting
to male or female variants.

Coreference Resolution. Various aspects of gender are embedded in coreference inferences, both
because gender can show up explicitly (e.g., pronouns in English, morphology in Arabic) and
because societal expectations and stereotypes around gender roles may be explicitly or implicitly
assumed by speakers or listeners [Cao and Daumé III 2020]. Although existing corpora have
promoted research into coreference resolution, they suffer from gender bias [Zhao et al. 2018a].

Webster et al. [2018] find that existing resolvers do not perform well and are biased to favour
better resolution of masculine pronouns. Rudinger et al. [2018] show how overall, male pronouns
are more likely to be resolved as occupation than female or neutral pronouns across all systems.
Moreover, Zhao et al. [2018a] demonstrate that neural coreference systems all link gendered
pronouns to stereotypical entities with higher accuracy than anti-stereotypical entities. Zhao et al.
[2018a] warn that bias encoded in word embeddings leads to sexism in coreference resolution.
Further, Bao and Qiao [2019] show significant gender bias when using popular NLP methods for
coreference resolution on both sentence and word level, indicating that women are associated with
family while men are associated with career.

Language Generation. Henderson et al. [2018] suggest that, due to their subjective nature and
goal of mimicking human behaviour, data-driven dialogue models are prone to implicitly encode
underlying biases in human dialogue, similar to related studies on biased lexical semantics derived
from large corpora [Bolukbasi et al. 2016; Caliskan et al. 2017]. Cercas Curry and Rieser [2018]
estimate that as many as 4% of conversations with chatbased systems are sexually charged. Further,
Bartl et al. [2020] find that the monolingual BERT reflects the real-world bias of the male- and
female-typical profession groups through stereotypical associations. Stories generated by GPT-3
differ based on a perceived gender of the character in a prompt with female characters being more
often associated with family, emotions and appearance, even in spite of a presence of power verbs
in a prompt [Lucy and Bamman 2021].

Sentiment Analysis. Kiritchenko and Mohammad [2018] test 219 automatic sentiment analysis
systems that participated in SemFEval-2018 Task 1 Affect in Tweets [Mohammad et al. 2018]. In
particular, Kiritchenko and Mohammad [2018] examine a hypothesis that a system should equally
rate the intensity of the emotion expressed by two sentences that differ only in the gender of a
person mentioned and find that the majority of the systems studied show statistically significant bias.
In particular, they consistently provide slightly higher sentiment intensity predictions for sentences
associated with one gender (gender with more positive sentiment varies based on a task and system
used). When predicting anger, joy, or valence, the number of systems with consistently higher
sentiment for sentences with female noun phrases is higher than for male noun phrases. Bhaskaran
and Bhallamudi [2019] show that analysed sentiment analysis methods exhibit differences in mean
predicted class probability between genders, though the directions vary again.

7.4 Summary

As seen above, NLP methods tend to be consistently biased and associate harmful stereotypes with
genders. Despite this fact, most of the papers that have focused on detecting gender bias in natural
language, methods, or downstream tasks, have seen bias detection as a goal in itself or a means of
analysing the nature of bias in domains of their interest. Some of this research has been followed
up with bias mitigation methods (discussed in §8). However, often enough, findings of this line
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of research are treated solely as a fact statement and not an action trigger. In particular, despite a
number of evidence showing that NLP methods encode gender bias, developers are not required
to provide any formal testing prior to releasing new models. Widely acknowledged models that
have led in recent years to significant gains on many NLP tasks have not included any study of
bias alongside the publication [Conneau et al. 2020; Devlin et al. 2019; Peters et al. 2018; Radford
et al. 2019]. Since these models were probed for gender bias only after their release, they might
have already caused harm in real life applications. We strongly encourage including bias detection
into the model development pipeline and see it as a necessary future development.

So far, research has predominantly aimed to detect bias towards male and female gender, ignoring
non-binary gender identities. However, it is crucial to design studies on gender bias detection that
are gender-inclusive at all stages, from defining gender and bias, dataset choice to selecting bias
detection method.

As discussed in §3, gender manifests itself in different ways across languages. Hence, it can be
expected that it’s also the case for gender bias. For instance, languages such as German, Hebrew
and Russian use gender inflections that reflect grammatical genders of the nouns. Further, gender
bias is grounded in societal and cultural views on gender and thus, its expressions potentially vary
across languages. Expanding research to languages beyond English and including data from outside
of the Anglosphere would lead to gaining a broader view on gender bias in societies. In particular,
analysing cross-lingual data might enable a comparative studies of gender bias.

8 MITIGATING GENDER BIAS

While it is impossible to altogether remove gender bias from language or from NLP algorithms,
research on gender bias mitigation is a significant step towards developing fair systems. In specific
applications, one might argue that gender biases in algorithms could capture valuable statistics such
as a higher probability of a nurse being a female. Nevertheless, given the potential risk of employing
machine learning algorithms that amplify gender stereotypes, Bolukbasi et al. [2016] recommend
erring on the side of neutrality and using debiased methods. However, following D’Ignazio [2021],
mitigating gender bias in Al systems is a short-term solution that needs to be combined with
higher-level long-term projects in challenging the current social status quo.

The main challenge in debiasing task is to strike a trade-off between maintaining model per-
formance on downstream tasks while reducing the encoded gender bias [de Vassimon Manela
et al. 2021; Zhao et al. 2018a]. Further, Bartl et al. [2020]; Sun et al. [2019] emphasise the need for
more typological variety in NLP research as well as for language-specific solutions. Many of the
mitigation methods rely on pre-defined words lists that are not scalable in a multilingual setup and
are tedious to create. However, recent work on dictionary definitions for debiasing might obviate the
need for predefined word lists [Kaneko and Bollegala 2021b]. While prior work has mainly focused
on mitigating gender bias in English, more recently, researchers have started to apply methods
initially developed for English to other languages as well. Naturally, a significant chunk of work for
multilingual settings has been researched in the context of neural machine translation [Prates et al.
2020; Vanmassenhove et al. 2018]. This stream of research has confirmed that language-specific
solutions are required, since gender is expressed in different ways across languages. For instance,
transferring a method successful in gender bias mitigation for English to German may be ineffective
which emphasises the need for more typological variety in research as well as language-specific
solutions [Bartl et al. 2020]. Therefore, it is crucial to develop (language-specific) debiasing methods,
especially for relatively new methods, to assess these limitations. Next, Kiritchenko and Mohammad
[2018] observed that different debiasing approaches have varying effects on the analysed word
embedding architectures. Many of the current debiasing methods are evaluated only on selected
downstream tasks without testing them in a broader scope. Hence, additional and potentially costly
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tests are required before applying these techniques to other, previously un-tested tasks since their
effectiveness there is unclear [Jin et al. 2021]. Therefore, we encourage research on debiasing
methods in the early modelling stages.

Data Manipulation
Data Augmentation Gender Tagging Balanced Fine-Tuning Adding Context
Madaan et al. [2018]; Park et al. [2018] Moryossef et al. [2019]; Vanmassenhove et al. [2018]  Park et al. [2018]; Saunders and Byrne [2020] Basta et al. [2020]
Hall Maudslay et al. [2019]; Zhao et al. [2018a] Habash et al. [2019]; Stafanovics et al. [2020] Costa-jussa and de Jorge [2020]
Emami et al. [2019]; Zmigrod et al. [2019] Saunders et al. [2020]
Bartl et al. [2020]; Zhao et al. [2019]
de Vassimon Manela et al. [2021]; Sen et al. [2021]

Methodological Adjustment
Projection-Based Debiasing Adversarial Learning Constraining Output Other

Bolukbasi et al. [2016]; Schmidt [2015] Li et al. [2018]; Zhang et al. [2018] Ma et al. [2020]; Zhao et al. [2017] Qian et al. [2019]; Zhao et al. [2018b]

Bordia and Bowman [2019]; Park et al. [2018] Jin et al. [2021]; Kaneko and Bollegala [2019]
Ethayarajh et al. [2019]; Sahlgren and Olsson [2019]

Karve et al. [2019]; Sedoc and Ungar [2019]

Liang et al. [2020]; Prost et al. [2019]

Dev et al. [2020]; Kaneko and Bollegala [2021a]

Table 3. Classification of gender bias mitigation methods with respective publications.

Different approaches have been developed to mitigate gender bias in NLP. In this paper, we
classify each of these methods following the two main categories, similarly to Sun et al. [2019] -
debiasing using data manipulation 8.1 and by adjusting algorithms 8.2 — while extending the scope
of our analysis with recent publications and incorporating word embeddings mitigation methods
into the methodoligical adjustment category. We summarise the identified lines of gender bias
mitigation methods in Table 3 together with the respective publications.

8.1 Debiasing Using Data Manipulation

Debiasing using data manipulation commonly refers to counterfactual data augmentation, gender
tagging, adding context, and balanced fine-tuning. Below we describe these approaches in detail.

8.1.1 Data Augmentation. Many concerns have been posed regarding modern NLP systems having
been trained on potentially biased datasets, as as these biases can be perpetuated to downstream
tasks and eventually society in the form of allocational harms [Hovy and Prabhumoye 2021].
Therefore, Costa-jussa and de Jorge [2020] claim that developing methods trained on balanced data
is a first step to eliminating representational harms.

In order to attenuate the impact of gender bias from the dataset used, Zhao et al. [2018a] propose a
rule-based approach to generate an auxiliary dataset where all-male entities are replaced by female
entities (and vice-versa) and suggest to train methods on the union of the original and augmented
dataset. Thus, both male and female genders are equally represented in the dataset. For instance, a
sentence My son plays with a car. would be transformed into My daughter plays with a car. Therefore,
to apply this method, a list of gendered pairs (such as son—-daughter) is required. Similarly, Emami
et al. [2019] propose to extend a training set for coreference resolution by switching every entity
pair. A method for debiasing gender-inflected languages is demonstrated in Zmigrod et al. [2019],
where sentences are reinflected from masculine to feminine (and vice-versa) in a counterfactual data
augmentation (CDA) scheme. Since this method analyses each word separately, it is not applicable
to more complex sentences involving coreference resolution. However, it introduces a feasible
debiasing approach for languages beyond English. Hall Maudslay et al. [2019] develop a name-based
version of CDA, in which the gender of words denoting persons in a training corpus are swapped
probabilistically in order to counterbalance bias.

Due to its simple implementation, counterfactual data augmentation has been widely applied to
mitigate gender bias. Since the model observes the same scenario in the doubled (for binary gender)
sentences, it can learn to abstract away from the entities to the context [Emami et al. 2019]. This
method has shown encouraging results in mitigating bias in contextualised word representations
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such as ELMo and monolingual BERT [Bartl et al. 2020; de Vassimon Manela et al. 2021; Sen et al.
2021; Zhao et al. 2019], and for hate speech detection [Park et al. 2018]. Nonetheless, collecting
annotated lists for gender-specific pairs can be expensive, and the method essentially doubles
the size of the training data. To this end, de Vassimon Manela et al. [2021] compare fine-tuning
contextualised word representation on augmented and un-augmented datasets and show that
fine-tuning solely on an augmented corpus successfully decreases gender bias.

Another method of gender bias mitigation via data augmentation is presented in Stanovsky et al.
[2019] who suggest a simple approach of “fighting bias with bias” and add stereotypical adjectives
to describe entities of the respective gender, e.g., “The pretty doctor asked the nurse to help her in the
procedure.”. However impractical this method is, relying on accurate coreference resolution, it has
shown to reduce bias in the tested languages.

8.1.2 Gender Tagging. Another stream of work has concentrated on incorporating external or
internal gender information during training. This method has been widely employed in debiasing
neural machine translation models to mitigate the issue of male default. Moryossef et al. [2019]
append a short phrase at inference time which acts as an indicator for the speaker’s gender, e.g.,
“She said:”, while similarly, Vanmassenhove et al. [2018] use sentence-level annotations. In order to
extend the mitigation method to be applicable to sentences with more than one gendered entity,
Stafanovics et al. [2020] utilise token-level annotations for the subject’s grammatical gender. Habash
et al. [2019] propose a post-processing method that is an intersection of gender tagging and CDA
and test it on Arabic. In gender-aware debiasing, a gender-blind system is being turned into a
gender-aware one by identifying gender-specific phrases in the system’s output and subsequently
offering alternative reinflections. In the domain of machine translation, Saunders et al. [2020]
propose an approach based on fine-tuning a model on a small, artificial dataset of sentences with
gender inflection tags which are then replaced by placeholders. However, the results of this scheme
are ambiguous, and this method is not well suited for translating sentences with multiple entities.

Methods relying on gender tagging are a flexible tool for controlling for bias. However, we
note that these methods do not inherently remove gender bias from the system [Cho et al. 2019].
Additionally, gender tagging requires meta-information on the gender of the speaker, which is
often either expensive or unavailable.

8.1.3 Adding Context. Alongside including the speaker’s information as in the above examples,
Basta et al. [2020] concatenate the previous sentence from a corpus to increase the context. Using
the additional information only in the decoder part of the Transformer architecture ultimately
reduces training parameters, simplifies the model, and requires no further information for training or
inference. Basta et al. [2020] show that this method improves the performance of machine translation
with coreference resolution tasks. However, Savoldi et al. [2021] note that this improvement might
not be due to the added gender context, but for instance, a regularisation effect.

8.1.4 Balanced Fine-Tuning. Balanced fine-tuning incorporates transfer learning from a less biased
dataset. In the first step, a model is trained on a large, unbiased dataset for the same or similar
downstream task and is then fine-tuned on a target dataset which is more biased [Park et al. 2018].
Such a training regime obviates potential over-fitting to a biased dataset. This method suffers from
a severe limitation, namely assuming an existence of an unbiased dataset in its initial step, which is
usually infeasible to obtain and thus, not applicable in real-life applications. On the other hand,
Saunders and Byrne [2020] consider gender bias in machine translation as a domain adaptation task
and use a handcrafted gender-balanced dataset together with a lattice re-scoring module to mitigate
the consequences of initial training on unbalanced data. Saunders and Byrne [2020] consider three
aspects of the adaptation problem: creating less biased adaptation data, parameter adaptation using
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this data, and inference with the debiased models produced by adaptation. However, the need for a
gender-balanced dataset for a specific domain might be a drawback of this approach. Costa-jussa
and de Jorge [2020] use an inverse approach and train their model on a larger corpus and fine-tune
it with a gender-balanced corpus showing that their approach successfully mitigates gender bias
and increases performance quality even if the balanced dataset is coming from a different domain.
However, Savoldi et al. [2021] note that this approach does not account for the qualitative differences
in how men and women are portrayed [Savoldi et al. 2021].

8.2 Debiasing by Adjusting Algorithms

Instead of manipulating the underlying data, a number of gender debiasing methods have been
implemented to approach the issue via algorithm adjustment. Such techniques can be categorised
into the following groups: projection-based debiasing, constraining models’ predictions, applying
adversarial learning approaches, and other.

8.2.1 Projection-Based Debiasing. To the best of our knowledge, Schmidt [2015] propose the first
word embedding debiasing algorithm and remove multiple gender dimensions from word vectors. In
parallel, instead of completely removing gender information, Bolukbasi et al. [2016] suggest shifting
word embeddings to be equally male and female in terms of their vector direction. For instance, a
debiased embeddings for grandmother and grandfather will be equally close to babysit without
neglecting the analogy to gender. More formally, Bolukbasi et al. [2016] propose two debiasing
methods, hard- and soft-debiasing. The first step for both of them consists of identifying a list of
gender-neutral words and a direction of the embedding that captures the bias. Hard-debiasing
(or ‘Neutralise and Equalise method’) ensures that gender-neutral words are zero in the gender
subspace and equalises sets of words outside the subspace and thereby enforces the property that
any neutral word is equidistant to all words in each equality set (a set of words which differ only in
the gender component). For instance, if (grandmother, grandfather) and (guy, gal) were two equality
sets, then after equalisation, ‘babysit’ would be equidistant to grandmother and grandfather and
also to gal and guy, but closer to the grandparents and further from the gal and guy. This approach
is suitable for applications where one does not want any such pair to display any bias with respect
to neutral words. The disadvantage of equalising sets of words outside the subspace is that it
removes particular distinctions that are valuable in specific applications. For instance, one may
wish a language model to assign a higher probability to the phrase to ‘grandfather a regulation’
since it is an idiom, unlike ‘grandmother a regulation’. The soft-debiasing algorithm reduces
differences between these sets while maintaining as much similarity to the original embedding as
possible, with a parameter that controls for this trade-off. In particular, soft-debiasing applies a
linear transformation that seeks to preserve pairwise inner products between all the word vectors
while minimising the projection of the gender-neutral words onto the gender subspace.

Both hard- and soft-debiasing approaches have been applied in research to word embeddings
and language models. Bordia and Bowman [2019] validate the soft-debiasing approach to mitigate
bias in LSTM based word-level language models. Park et al. [2018] compare hard-debiasing method
to other methods in the context of abusive language detection. Sahlgren and Olsson [2019] apply
hard-debiasing to Swedish word embeddings and show that this method does not have the desired
effect when tested on selected downstream tasks. Sahlgren and Olsson [2019] argue that these
unsatisfactory results are due to including person names in their training process. Interestingly,
Ethayarajh et al. [2019] show that debiasing word embeddings post hoc using subspace projection
is, under certain conditions, equivalent to training on an unbiased corpus. Similarly to Bolukbasi
et al. [2016], Karve et al. [2019]; Sedoc and Ungar [2019] aim to identify the bias subspace in word
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embeddings using a set of target words and a debiasing conceptor, a mathematical representation
of subspaces that can be operated on and composed by logic-based manipulations.

However, these methods strongly rely on the pre-defined lists of gender-neutral words Sedoc
and Ungar [2019]. Moreover, Zhao et al. [2018b] prove that an error in identifying gender-neutral
words affects the performance of the downstream model. Bordia and Bowman [2019]; Zhao et al.
[2018b] notice a trade-off between perplexity and gender bias as in an unbiased model, male and
female words are predicted with an equal probability. This can be undesirable in domains such as
social science and medicine. While Gonen and Goldberg [2019] claim that debiasing is primarily
superficial since a lot of the supposedly removed bias can still be recovered due to the geometry of
the word representation of the gender neutralised words, Prost et al. [2019] show that soft-debiasing
can even increase the bias of a downstream classifier by removing noise from gender-neutral words
and ultimately providing a less noisy communication channel for gender clues.

Recently, Liang et al. [2020] use DensRay [Dufter and Schiitze 2019], an interpretable method for
identifying the embedding subspace using projections and then evaluate gender bias in masked
language models by comparing the difference in the log-likelihood between male and female
pronouns in a template “{/MASK] is a/an [occupation].”. However, this method heavily relies on a list
of occupations and a simple template. Further, Dev et al. [2020] employ an orthogonal projection to
gender direction [Dev and Phillips 2019] to debias contextualised embeddings and test it on a NLI
task with gender-biased hypothesis pairs. However, this method can only be applied to the model’s
non-contextualised layers. Kaneko and Bollegala [2021a] obviate this limitation in a fine-tuning
setting. Their method applies an orthogonal projection only in the hidden layers and proves to
outperform Dev et al. [2020]. Additionally, this method is independent of model architectures or
their pre-training method. However, this approach requires a list of attribute words (e.g., she, man,
her) and target words (e.g., occupations) to extract relevant sentences from the corpus, making
their method highly reliant on this list.

8.2.2 Constraining Output. A simple approach to debiasing algorithms is to constrain model
output post-hoc. To this end, Zhao et al. [2017] propose a debiasing techique that constrains
model predictions to follow a distribution from a training corpus, e.g., the ratio of male and female
pronouns. Thus, this method is highly dependent on the gender balance and bias in the underlying
data.

In the field of language generation, Ma et al. [2020] introduce controllable debiasing as an
unsupervised text revision task that aims to correct the implicit bias against or towards a specific
character portrayed in a language model generated text. For this purpose, they create an encoder-
decoder model that rewrites a text to portray females as more agent (in terms of Sap et al. [2017]’s
connotation frames). However, their approach relies strongly on an external corpus of paraphrases.

8.2.3 Adversarial Learning. Another strain of work has employed adversarial learning as a debiasing
method. Li et al. [2018] propose a method for removing model biases by explicitly protecting
demographic information (such as gender) during model training. However, Elazar and Goldberg
[2018] claim that word representations preserve traces of the protected attributes and recommend
external verification of the method. Similarly, Zhang et al. [2018] apply adversarial learning by
including gender as a protected variable and having the generator learn with respect to it. In general,
the objective of such a model is to maximise the predictor’s ability to predict a variable of interest
while fooling the adversary to predict the protected attribute. However, in general, adversarial
learning is often an unstable method and can only be used when gender is a protected attribute
rather than a variable of interest.

8.2.4 Other. Several other methods have been tested to mitigate gender bias in NLP methods.
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Alongside projection-based methods for debiasing word embeddings, another approach to
debiasing word embeddings has aimed to learn their gender-neutralised variant. In particular,
Zhao et al. [2018b] propose to train word embeddings such that protected attributes are neutralised
in some of the dimensions, resulting in gender-neutral word representations. Restricting the
information of protected attributes in certain dimensions enables its removal from an embedding.
Additionally, other than the method presented in Bolukbasi et al. [2016] gender-neutral words are
learned jointly in the training process instead of being manually created. However, Sun et al. [2019]
note that it is unclear if gender-neutralised word embeddings are applicable to languages with
grammatical genders.

Adjusting the loss function has proven to be another viable method for gender bias mitigation.
In particular, Qian et al. [2019] introduces a new term to the loss function, which attempts to
equalise the probabilities of male and female words (based on a pre-defined list) in the output and
evaluate it on a text generation task. We see two main limitations of this approach. First, it relies
on a straightforward definition of bias (i.e., an equal number of gender mentions). Second, as with
many other methods, it requires a list of gender pairs, a limitation we discuss above.

Gender-preserving debiasing has been introduced to mitigate gender bias, accounting that not all
gender associations are stereotypical. Kaneko and Bollegala [2019] split a given vocabulary into four
mutually exclusive sets of word categories: words that are female-biased but non-discriminative,
male-biased but non-discriminative, gender-neutral words, and words perpetuating stereotypes.
Kaneko and Bollegala [2019] learn word embeddings that preserve the information for the gendered
but non-stereotypical words protects the neutrality of the gender-neutral words while removing
the gender-related biases from stereotypical words. The embedding is learnt using an encoder in a
denoising autoencoder, while the decoder is trained to reconstruct the original word embeddings
from the debiased embeddings. However, creating a word list with the above-mentioned categories
of words is time-consuming, and word categorisation might not be straightforward.

Jin et al. [2021] investigate incorporating bias mitigation into the model’s objective. First, an
upstream model is fine-tuned with a bias mitigation objective which consists of a text encoder
and a classifier head. Subsequently, the encoder from the upstream model, jointly with the new
classification layer, are again fine-tuned on a downstream task. Jin et al. [2021] note that upstream
bias mitigation, while less effective, is more efficient than direct bias mitigation methods without
fine-tuning. However, it requires a tailored evaluation for the downstream task.

9 DISCUSSION

After presenting probing datasets, formal definitions, detection, and mitigation methods, we next
present the main findings we make throughout this survey. We find that existing research on gender
bias has four main limitations and discuss them in the following.

Gender in NLP. It is not uncommon for studies about gender to be reported without any expla-
nation of how gender labels are ascribed, and the ones that do, explain the imputation of gender
categories in a debatable way [Larson 2017]. Using gender as a variable in NLP is an ethical issue,
thus unreflectively assigning gender category labels may violate ethical frameworks that demand
transparency and accountability from researchers [Larson 2017]. Therefore, it is crucial to ask how
researchers can use NLP tools to investigate the relationship between gender and text meaningfully,
yet without harmful stereotypes Koolen and van Cranenburgh [2017]. To obviate this risk, Larson
[2017] suggest formulating research questions with explicit definitions of gender, avoiding using
gender as a variable unless it is necessary. Not being explicit about the ascription of the category
of gender as a variable to participants brings into question the internal and external validity of
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research findings because it makes it difficult to near-impossible for other scholars to reproduce,
test, or extend study findings [Larson 2017].

We find that researchers often decide to define gender in their study as binary. However, making
this assumption is an oversimplification of gender complexity and can perpetuate harms to non-
binary people [Behm-Morawitz and Mastro 2008; Fast et al. 2016]. We encourage researchers to
define gender in a transparent and inclusive manner, to expand corpora with inclusive pronouns,
and evaluate models on non-binary pronouns as well to mitigate these harms. So far models’
performance on downstream tasks has been consistently lower for non-binary pronouns compared
to the binary pronouns [Cao and Daumé III 2020; Sun et al. 2021].

Monolingual focus. Gender bias is grounded in societal and cultural views on gender, and thus, its
expressions vary across languages. Expanding research to languages beyond English and including
data from outside of the Anglosphere would lead to gaining a broader view on gender bias in societies
which we strongly encourage. However, most prior research on gender bias has been monolingual,
focusing predominantly on English or a small number of other high-resource languages such as
Chinese [Liang et al. 2020] and Spanish [Zhao et al. 2020] with the notable exception of a broader
multilingual analysis of gender bias in machine translation [Prates et al. 2020] and language models
[Stanczak et al. 2021].

Need for formal testing. Most of the papers that have focused on detecting gender bias in natural
language, methods, or downstream tasks, have seen bias detection as a goal in itself or a means of
analysing the nature of bias in domains of their interest. Widely acknowledged models that have
led in recent years to significant gains on many NLP tasks have not included any study of bias
alongside the publication [Conneau et al. 2020; Devlin et al. 2019; Peters et al. 2018; Radford et al.
2019]. In general, these methods are tested for biases only post-hoc when already being deployed
in real-life applications, potentially posing harm to different social groups [Mitchell et al. 2019].
Since these models were probed for gender bias only after their release, they might have already
caused societal harms. We find that bias detection should be included in the model development
pipeline at early stages and see enforcing this change as a primary challenge. The way to ensure
that researchers abide by ethical principles is to hold them accountable when research projects are
planned, i.e., requiring project proposals and publications to include ethical considerations and,
later, during the peer review process.

Limited definitions. However, to introduce formal testing comprehensive and multi-faceted bias
measures are required. We find that similarly to research within societal biases Blodgett et al. [2020],
work on gender bias in particular, suffers from incoherence in usage of evaluation metrics. Most of
the publications on gender bias consider only one way of defining bias and do not engage enough
parallel research to combine these methods. Gender bias can be expressed in language in many
nuanced ways which poses stating a comprehensive definition as one of the main challenges in
this research field. Finally, we strongly encourage developing standard evaluation benchmarks and
tests to enhance comparability.

10  CONCLUSION

In this paper, we present a comprehensive survey of 304 papers on gender bias in natural language
and NLP methods published since gender bias has been studied in NLP. We find four major
limitations in the existing research and see overcoming these limitations as crucial for further
development of this field.

First, most research lacks transparent and inclusive gender and gender bias definitions. Gender is
mainly treated as a binary variable which disagrees with social science position. Next, the majority
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of the work disregards low-resource languages, concentrating solely on English and other high-
resource languages such as Spanish and Chinese, which imposes a strongly restricted view on the
nature of gender bias in NLP. Moreover, despite a myriad of papers on gender bias in NLP methods,
most of the newly developed algorithms do not test their models for bias and disregard possible
ethical considerations of their work. This leads to deployment of models that lead to potential
societal harms. Finally, we find that the methodology used in this research field is fundamentally
flawed, covering only limited aspects of gender bias and lacking baselines for evaluation and testing
pipelines.
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