
Original Investigation | Geriatrics

Algorithmic Fairness of Machine Learning Models for Alzheimer Disease Progression
Chenxi Yuan, PhD; Kristin A. Linn, PhD; Rebecca A. Hubbard, PhD

Abstract

IMPORTANCE Predictive models using machine learning techniques have potential to improve early
detection and management of Alzheimer disease (AD). However, these models potentially have
biases and may perpetuate or exacerbate existing disparities.

OBJECTIVE To characterize the algorithmic fairness of longitudinal prediction models for AD
progression.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study investigated the algorithmic fairness
of logistic regression, support vector machines, and recurrent neural networks for predicting
progression to mild cognitive impairment (MCI) and AD using data from participants in the Alzheimer
Disease Neuroimaging Initiative evaluated at 57 sites in the US and Canada. Participants aged 54 to
91 years who contributed data on at least 2 visits between September 2005 and May 2017 were
included. Data were analyzed in October 2022.

EXPOSURES Fairness was quantified across sex, ethnicity, and race groups. Neuropsychological test
scores, anatomical features from T1 magnetic resonance imaging, measures extracted from positron
emission tomography, and cerebrospinal fluid biomarkers were included as predictors.

MAIN OUTCOMES AND MEASURES Outcome measures quantified fairness of prediction models
(logistic regression [LR], support vector machine [SVM], and recurrent neural network [RNN]
models), including equal opportunity, equalized odds, and demographic parity. Specifically, if the
model exhibited equal sensitivity for all groups, it aligned with the principle of equal opportunity,
indicating fairness in predictive performance.

RESULTS A total of 1730 participants in the cohort (mean [SD] age, 73.81 [6.92] years; 776 females
[44.9%]; 69 Hispanic [4.0%] and 1661 non-Hispanic [96.0%]; 29 Asian [1.7%], 77 Black [4.5%], 1599
White [92.4%], and 25 other race [1.4%]) were included. Sensitivity for predicting progression to MCI
and AD was lower for Hispanic participants compared with non-Hispanic participants; the difference
(SD) in true positive rate ranged from 20.9% (5.5%) for the RNN model to 27.8% (9.8%) for the SVM
model in MCI and 24.1% (5.4%) for the RNN model to 48.2% (17.3%) for the LR model in AD.
Sensitivity was similarly lower for Black and Asian participants compared with non-Hispanic White
participants; for example, the difference (SD) in AD true positive rate was 14.5% (51.6%) in the LR
model, 12.3% (35.1%) in the SVM model, and 28.4% (16.8%) in the RNN model for Black vs White
participants, and the difference (SD) in MCI true positive rate was 25.6% (13.1%) in the LR model,
24.3% (13.1%) in the SVM model, and 6.8% (18.7%) in the RNN model for Asian vs White participants.
Models generally satisfied metrics of fairness with respect to sex, with no significant differences by
group, except for cognitively normal (CN)–MCI and MCI-AD transitions (eg, an absolute increase [SD]
in the true positive rate of CN-MCI transitions of 10.3% [27.8%] for the LR model).
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Abstract (continued)

CONCLUSIONS AND RELEVANCE In this study, models were accurate in aggregate but failed to
satisfy fairness metrics. These findings suggest that fairness should be considered in the
development and use of machine learning models for AD progression.
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Introduction

The development and use of machine learning (ML) algorithms in health care has received a surge of
attention in recent years.1-12 Although ML algorithms can inform clinical decision-making and are
potentially associated with improved population health,13 there is growing concern that ML may
inadvertently introduce bias into decision-making processes, which may be associated with
unintended discrimination against underrepresented and disadvantaged populations.14-16 Given that
algorithms are vulnerable to biases that render their decisions unfair, fairness, in the context of
decision making, is the absence of any prejudice or favoritism toward an individual or group based on
that groups’ inherent or acquired characteristics. An unfair algorithm, also referred to as algorithmic
bias, skews benefits toward a particular group of people with respect to protected attributes.17

Protected attributes are features that may not be used as the basis for decisions. There is no one
universal set of protected attributes. They are determined based on laws, regulations, or other
policies governing a particular application domain in a particular jurisdiction. Attributes such as race
and ethnicity, color, age, gender and sex, national origin, religion, and marital status are commonly
considered protected attributes.17-19

The Department of Health and Human Services has mandated identification of sources of bias
and discriminatory outputs in ML algorithms,20 and a large body of research has been conducted on
algorithmic bias in health and medicine.21-27 However, the problem of algorithmic bias in the context
of ML for Alzheimer disease (AD), such as the prediction of AD progression using ML approaches, has
received little attention. Biased prediction models may favor or disadvantage some groups, which
may be associated with misdiagnoses, improper treatment recommendations, and insufficient or
unnecessary care for individuals experiencing bias.28-30 In this study, we investigated the algorithmic
fairness of longitudinal prediction models for AD progression. Using publicly available data from the
Alzheimer Disease Neuroimaging Initiative (ADNI),31 we had an objective of auditing the fairness of
ML models for AD progression prediction. The overall goals of this study were to introduce and
define fairness metrics relevant to models for predicting AD progression and to illustrate how ML
algorithms may be analyzed to reveal potential disparities across protected attributes.

Methods

This prognostic study followed the Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) reporting guideline. Written informed consent was
obtained for participation in ADNI, as approved by the institutional review board at each
participating center. Ethical approval and informed consent were not required because this study,
consisting of secondary data analysis of coded data that cannot be linked to individual participants,
is not considered human participants research according to the policies of the Institutional Review
Board of the University Pennsylvania.

Population
Data were derived from the ADNI to facilitate study of AD progression.31,32 In brief, ADNI enrolled
participants aged 54 to 91 years at 57 sites in the US and Canada. Our data set incorporated
longitudinal data from multiple ADNI study phases and measurements from every participant
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contributing data on at least 2 visits between September 2005 and May 2017. Clinical status at each
visit was classified as cognitively normal (CN), mild cognitive impairment (MCI), or AD.

Protected Attributes
To evaluate fairness criteria, groups were defined by demographic attributes. We focused on
attributes of sex, ethnicity, and race because previous studies in the fairness literature have
highlighted algorithmic bias according to these characteristics.27,33 All characteristics were classified
according to participant self-report. Sex was classified as female or male. Ethnicity was classified as
not Hispanic or Latino or Hispanic or Latino. Participants reporting unknown ethnicity were excluded
from ethnicity-stratified analyses. Race included 7 distinct groups: Asian, American Indian or Alaskan
Native, Black or African American, Hawaiian or Other Pacific Islander, White, and more than 1
reported race. We aggregated America Indian and Alaskan Native, Hawaiian and Other Pacific
Islander, more than 1 race, and unknown into a category labeled other due to their small population
sizes and evaluated fairness across 4 racial categories: Asian, Black, White, and other.

Study Design
We defined unfairness, or algorithmic bias, as differences in the predictive performance of an ML
algorithm across subpopulations defined by a protected attribute. For example, differences in
sensitivity of a model for predicting AD progression in a Black population compared with a White
population would be indicative of unfairness. We focused on 3 commonly used fairness metrics:
equalized odds, equal opportunity, and demographic parity.17,34 These criteria have natural
interpretations in the context of AD progression prediction. Equal opportunity is defined as equal
sensitivity or true positive rates (TPRs) of the ML algorithm across all levels of the protected
attribute.35 An AD progression algorithm would exhibit equal opportunity if individuals who
progressed to AD were equally likely to be identified by the algorithm across all protected groups.
Equalized odds requires that an algorithm exhibit equal opportunity and equal specificity or false
positive rates (FPRs) across groups. Demographic parity is the equivalence of a predicted event’s
probability across groups by sensitive attribute.34 For progression to AD, demographic parity with
respect to sex would be satisfied if females and males were predicted to develop AD with equal
probability. When real differences in outcome prevalence exist across groups, achieving demographic
parity may be undesirable. Importantly, unless prevalence is equal across groups, it is impossible to
simultaneously satisfy all metrics. Table 1 presents mathematical definitions of these
fairness metrics.

Prediction Models
We assessed fairness with respect to the task of predicting AD progression with ML algorithms.36 We
selected 3 ML models for evaluation in this study: logistic regression (LR), support vector machine
(SVM), and recurrent neural network (RNN) models. We included LR and SVM because they are well-
established ML models commonly used for prediction problems and are often presented as
comparators for new models.7,37,38 As a deep-learning model, RNN has shown promise in the AD
progression domain39,40 and has been applied to prediction problems,38,41 demonstrating
improvement over other ML models on prediction accuracy. The RNN model we tested in this study

Table 1. Mathematical Definitions of 3 Common Fairness Metrics

Fairness metric Definitiona Explanation with sample of use in Alzheimer disease
Equal opportunity True positive rates are the same across groups:

P(Ŷ = 1|A = 0, Y = 1) = P(Ŷ = 1|A = 1, Y = 1)
The probability of correctly predicting that an individual progresses to AD is
the same for groups defined by a protected attribute, such as race

Equal odds True positive rates and false positive rates are the same across groups:
P(Ŷ = 1|A = 0, Y = y) = P(Ŷ = 1|A = 1, Y = y), y � {0,1}

The probability of correctly predicting that an individual progresses to AD
and the probability of incorrectly predicting progression to AD for those who
do not are the same for groups defined by a protected attribute, such as race

Demographic parity Equal probability of being classified with the positive label:
P(Ŷ = 1|A = 0) = P(Ŷ = 1|A = 1)

The proportion of individuals predicted to progress to AD is the same across
groups defined by a protected attribute, such as race

a Y indicates the observed outcome, Ŷ a prediction of Y, and A a binary protected attribute.
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is from Nguyen et al.36 Given multimodal predictors and the diagnostic status of a participant at
baseline, we sought to predict diagnosis stage at the subsequent visit as CN, MCI, or AD for all
subsequent months. We defined progression trajectories as transition from baseline CN to MCI,
baseline MCI to AD, stable CN, and stable MCI (ie, patients recorded at the same stage at baseline and
at a final visit). Predictors included neuropsychological test scores, anatomical features derived from
magnetic resonance imaging, positron emission tomography measures, and cerebrospinal fluid
markers (see complete list of predictors in Table 2). Additional details of model implementation and
training are provided in eMethods in Supplement 1.

We used cross-validation for model selection and evaluation. Data were randomly partitioned
into 10 equal subsets. Each 10-fold cross-validation iteration used 80% of participants for training,
10% of participants for model validation, and 10% of participants for testing. The training set was
used for model fitting, the validation set for hyperparameter selection, and the test set for model
performance evaluation. All continuous variables were z normalized using the training set to estimate
the mean and SD, which were then used to z normalize validation and test sets. The multiclass area
under the operating curve and balanced class accuracy were used to evaluate models (eMethods and
eTable 2 in Supplement 1).

Statistical Analysis
To assess algorithmic fairness, we calculated fairness metrics on each of 10 test sets using predictions
from each model. Metrics are reported as the mean and SD across the 10 values. Evaluations were
conducted separately by demographic group. We first assessed equal opportunity by computing the
TPR for groups defined by each protected attribute separately for each cognitive functioning
trajectory (ie, CN to MCI, MCI to AD, stable CN, and stable MCI) and each of 3 models. The TPR
quantifies the proportion of individuals experiencing a given trajectory who were correctly predicted
to follow that trajectory. For instance, the TPR of CN to MCI represents the probability of correctly
predicting that an individual progressed from CN to MCI. A TPR value of 1 indicates that the model has
achieved perfect sensitivity in identifying the positive instances within the category. If the TPRs for
each trajectory are similar across protected feature categories, it suggests that the model attained
equal opportunity. We also calculated differences in TPR between groups for each protected
attribute. In addition to TPR, we calculated the FPR. Specifically, for a given trajectory the FPR is
defined as the proportion of individuals who did not experience that trajectory who were incorrectly
predicted to follow that trajectory. For example, the FPR of CN to MCI represents the probability of
predicting progression from CN to MCI for an individual who did not progress. An algorithm must
demonstrate equal TPR and equal FPR across groups to satisfy the equalized odds criterion. To assess
demographic parity, we computed the predicted probability for each individual. We report the
difference in mean predicted probabilities across groups for each sensitive attribute, trajectory, and
ML model. Finally, we calculated the empirical probability of each trajectory stratified by
demographic group. Hypothesis testing was not used in this context due to the lack of independence
among predicted values on test sets.42 Additionally, due to small sample sizes in some groups,
nonparametric and parametric tests are expected to have low power. We therefore focused on point
estimation and interpretation of point estimates given their variability. An overview of the
experimental procedure is shown in eFigure 1 in Supplement 1. Statical analysis was conducted using
Python programming language version 2.7 (Python Software Foundation). Data were analyzed in
October 2022.

Results

Study Cohort
A total of 1730 participants (mean [SD] age, 73.81 [6.92] years; 776 females [44.9%]; 69 Hispanic
[4.0%] and 1661 non-Hispanic [96.0%]; 29 Asian [1.7%], 77 Black [4.5%], 1599 White [92.4%], and
25 other race [1.4%]) were included, and each was scanned at multiple time points, contributing an

JAMA Network Open | Geriatrics Algorithmic Fairness of Machine Learning Models for Alzheimer Disease Progression

JAMA Network Open. 2023;6(11):e2342203. doi:10.1001/jamanetworkopen.2023.42203 (Reprinted) November 7, 2023 4/14

Downloaded from jamanetwork.com by guest on 01/15/2024

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.42203&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.42203
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.42203&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.42203
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.42203&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.42203


mean (SD) 7.3 (4.0) observations per participant over a mean [SD] 3.6 (2.5) years. The distribution of
participant characteristics stratified by clinical status at the baseline and last visit is provided in
Table 2. There were 337 participants with the CN-stable trajectory (86.2%), 54 participants with the
CN-MCI trajectory (13.8%), 519 participants with the MCI-stable trajectory (62.4%), and 313
individuals with the MCI-AD trajectory (38.6%). These groups included 173 females (51.3%), 19

Table 2. Participant Characteristics by Cognitive Functioning Trajectory

Characteristic

Mean (SD) (N = 1730)a

CN-stable trajectory
(n = 337 [86.2%])

CN-MCI trajectory
(n = 54 [13.8%])

MCI-stable trajectory
(n = 519 [62.4%])

MCI-AD trajectory
(n = 313 [37.6%])

Protected attribute, No. (%)

Sex

Female 173 (51.3) 19 (35.2) 213 (41.0) 123 (39.3)

Male 164 (48.7) 35 (64.8) 306 (59.0) 190 (60.7)

Ethnicity

Hispanic 13 (3.8) 5 (9.3) 20 (3.9) 10 (3.2)

Not Hispanic 324 (96.2) 49 (90.7) 499 (96.1) 303 (96.8)

Race

Asian 7 (2.1) 2 (3.7) 7 (1.3) 6 (2.0)

Black 24 (7.1) 5 (9.3) 22 (4.2) 7 (2.2)

White 303 (89.9) 42 (77.7) 479 (92.3) 298 (95.2)

Otherb 3 (0.9) 5 (9.3) 11 (2.2) 2 (0.6)

Predictor

CDR-SB 0.08 (0.46) 0.45 (0.77) 1.41 (1.21) 4.11 (3.28)

ADAS-Cog

11 5.4 (0.2) 7.3 (3.7) 9.0 (4.7) 16.7 (9.0)

13 84.9 (4.3) 11.7 (5.5) 14.4 (6.9) 25.8 (11.1)

Mini Mental State
Examination

29.0 (1.2) 28.8 (1.4) 27.7 (2.2) 24.3 (4.5)

RAVLT

Immediate 45.4 (10.4) 39.4 (10.6) 35.7 (11.3) 25.2 (9.2)

Learning 5.8 (2.4) 4.8 (2.5) 4.3 (2.6) 2.4 (2.2)

Forgetting 3.4 (2.8) 4.2 (2.4) 4.5 (2.5) 4.7 (2.1)

RAVLT Percent Forgetting 32.5 (31.9) 47.6 (30.0) 56.7 (36.6) 83.3 (30.4)

Functional Activities
Questionnaire

1.8 (8.2) 0.9 (2.2) 2.6 (3.9) 1.1 (0.8)

Montreal Cognitive
Assessment

25.8 (2.5) 24.4 (2.8) 23.8 (3.1) 18.6 (5.3)

Volume, mm3

Ventricles, × 104 3.50 (1.95) 4.23 (1.93) 4.01 (2.32) 4.88 (2.37)

Hippocampus, × 103 7.32 (0.92) 6.89 (0.86) 6.97 (1.11) 5.91 (1.11)

Whole brain, × 106 1.01 (0.10) 1.02 (0.09) 1.04 (0.10) 0.98 (0.11)

Entorhinal cortical,
× 103

3.79 (0.61) 3.56 (0.76) 3.64 (0.71) 2.99 (0.78)

Fusiform cortical,
× 104

1.76 (0.24) 1.76 (0.23) 1.80 (0.26) 1.59 (0.27)

Middle temporal
cortical, × 104

2.00 (0.26) 1.97 (0.24) 2.01 (0.27) 1.77 (0.30)

Intracranial, × 106 1.51 (0.15) 1.56 (0.14) 1.53 (0.16) 1.54 (0.17)

PET

18F-AV-45 1.0 (0.1) 1.1 (0.1) 1.1 (0.2) 1.3 (0.2)

FDG 1.3 (0.1) 1.2 (0.1) 1.3 (0.1) 1.1 (0.1)

CSF-β-amyloid level,
pg/mL × 103

1.31 (0.61) 1.31 (0.75) 1.11 (0.58) 0.68 (0.31)

τ level, pg/mL

Total, × 102 2.40 (0.90) 2.87 (0.87) 2.69 (1.18) 3.50 (1.46)

Phosphorylated 22.0 (9.5) 26.6 (8.5) 25.5 (13.2) 34.6 (16.3)

Abbreviations: 18F-AV-45, florbetapir; AD, Alzheimer
disease; ADAS-Cog, Alzheimer Disease Assessment
Scale-Cognitive Subscale; CDR-SB, Clinical Dementia
Rating-Sum of Boxes; CN, cognitively normal; FDG,
fluorodeoxyglucose; MCI, mild cognitive impairment;
PET, positron emission tomography; RAVLT, Rey
Auditory Verbal Learning Test.
a In the CN-MCI trajectory, participants had CN

progression to MCI. In the MCI-AD trajectory,
participants had MCI progression to AD. In CN-stable
and MCI-stable trajectories, participants were
observed with the same stage at baseline and
final visit.

b Includes American Indian or Alaskan Native,
Hawaiian or Other Pacific Islander, and more than 1
reported race, and unknown race.
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females (35.2%), 213 females (41.0%), and 123 females (39.3%), respectively. Backward transitions
(ie, MCI to CN or AD to MCI or CN) and transitions from CN to AD were rarely observed (eTable 1 in
Supplement 1) and were, therefore, not included in fairness evaluations.

Equal Opportunity and Equalized Odds
Figure 1A and D and eFigure 3 in Supplement 1 show TPRs for progression to AD and MCI,
respectively, stratified by sex for each of 3 models. For CN-stable and MCI-stable trajectories, the TPR

Figure 1. True Positive Rates (TPRs) of Alzheimer Disease Progression by Protected Attribute
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and recurrent neural network (RNN) models. Bars indicate mean values across 10 test
sets; error bars, SDs of 10 mean values.
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was close to 1, and there were no major differences in TPR between females and males. The
difference (SD) in TPR between males and females for the CN-stable trajectory was 0.5% (0.8%) for
the LR model, 0.5% (0.8%) for the SVM model, and 0.6% (0.9%) for the RNN model. The difference
(SD) in TPR for the MCI-stable trajectory was 0.4% (4.3%) for the LR model, 1.3% (4.6%) for the SVM
model, and 1.7% (2.7%) for the RNN model (eFigure 2 in Supplement 1). For transition from CN to
MCI, there was a notable difference in TPR between sexes, with all models performing better for
females than males; there was an absolute increases (SD) of 10.3% (27.8%), 15.0% (25.7%), and
10.4% (6.8%) for LR, SVM, and RNN models, respectively. For transition from MCI to AD, small
differences in TPR were observed between sexes (eg, the difference [SD] was 2.5% [20.1%] in the LR
model, 4.6% [17.5%] in the SVM model, and 1.7% [11.2%] in the RNN model). Models performed
similarly overall, but RNN had higher TPR for predicting progression from CN to MCI and MCI to AD,
as well as less variability across test sets (eFigure 2 in Supplement 1).

Figure 1B and E and eFigure 3 in Supplement 1 show TPRs for progression to AD and MCI,
respectively, stratified by ethnicity. Overall, across trajectories and models, TPR was higher for
non-Hispanic participants compared with Hispanic participants. The difference (SD) in TPR between
non-Hispanic and Hispanic participants was 1.4% (3.5%) in the LR model, 2.2% (6.5%) in the SVM
model, and 2.1% (6.5%) in the RNN model for the CN-stable trajectory and 3.9% (21.3%) in the LR
model, 6.9% (25.3%) in the SVM model, and 5.8% (25.3%) in the RNN model for the MCI-stable
trajectory across the 3 models (eFigure 2 in Supplement 1). Differences in TPRs were larger for
progression from CN to MCI and MCI to AD. Specifically, the TPR difference (SD) for Hispanic
participants was 23.1% (10.1%), 27.8% (9.8%), 20.9% (5.5%) lower compared with non-Hispanic
participants for progression from CN to MCI and 48.2% (17.3%), 36.6% (13.9%), 24.1% (5.4%) lower
for progression from MCI to AD for LR, SVM, and RNN models, respectively. In most cases, RNN had a
higher TPR than other models. Across models for MCI progression to AD, RNN had the highest TPR
and smallest difference in TPR between Hispanic and non-Hispanic participants (eFigure 2 in
Supplement 1).

Comparisons of TPRs across racial groups are shown in Figure 1C and F for progression to AD
and eFigure 3 in Supplement 1 for progression to MCI. For the CN-stable trajectory, the TPR (SD) was
high for White participants (95.7% [0.9%] for the LR model, 95.9% [1.0%] for the SVM model, and
97.0% [1.1%] for the RNN model) and lower for other groups (Asian: range, 90.9% [1.1%] for the LR
model to 97.3% [0.7%] for the RNN model; Black: range, 73.3% [5.1%] for the LR model to 90.0%
[3.6%] for the RNN model; and other race: range, 78.9% [1.0%] for the LR model to 91.4% [4.4%] for
the RNN model) across 3 models. Patterns across racial groups for the MCI-stable trajectory were
similar to those for the CN-stable trajectory. For CN to MCI, Asian participants had a higher TPR (SD)
than other groups for SVM (Asian: 26.5% [18.4%]; Black: 8.3% [5.9%]; White: 1.6% [7.1%]; other race:
7.6% [3.6%]). The TPR (SD) for Black participants was lowest for CN to MCI progression across 3
models (Black: range, 8.3% [5.1%] for the SVM model to 12.5% [11.4%] for the RNN model; Asian:
range, 9.6% [5.7%] for the LR model to 20.6% [12.8%] for the RNN model; White: range, 16.0%
[7.1%] for the SVM model to 27.7% [6.9%] for the RNN model; other race: range 7.6% [3.6%] for the
LR model to 14.4% [14.3%] for the RNN model). White participants had a higher TPR for progression
from MCI to AD for 2 of 3 models (eFigure 2 in Supplement 1). Sensitivity was lower for Black and
Asian participants compared with non-Hispanic White participants (eg, the difference [SD] in TPR
was 14.5% [51.6%] in the LR model, 12.3% [35.1%] in the SVM model, and 28.4% [16.8%] in the RNN
model for AD in Black vs White participants, and the difference [SD] in TPR was 25.6% [13.1%] in the
LR model, 24.3% [13.1%] in the SVM model, and 6.8% [18.7%] in the RNN model for MCI in Asian vs
White participants).

For all 3 models, the FPR was lower for females compared with males for AD progression
(Figure 2A and D) and MCI progression (eFigure 4 in Supplement 1). Similarly, non-Hispanic
participants had a lower FPR than Hispanic participants for all trajectories (Figure 2B and E; eFigure 4
in Supplement 1). For racial groups, the FPR for Black participants was higher compared with that of
other racial groups for the CN-stable trajectory. For the MCI-stable trajectory, the FPR was higher for
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Asian participants compared with other groups (Figure 2C and F; eFigure 4 in Supplement 1). Overall,
the FPR for progression from CN to MCI and MCI to AD was lower than that for stable CN and MCI
trajectories. However, large error bars for Asian, Black, and other racial groups reflect uncertainty in
FPR point estimates due to the small sample sizes of these groups.

Figure 2. False Positive Rates (FPRs) of Alzheimer Disease Progression by Protected Attribute
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Demographic Parity
Observed and predicted prevalence of cognitive functioning trajectories differed across groups
defined by protected attributes (eFigure 5 in Supplement 1). Across models, the probability of being
predicted to have CN-stable or MCI-stable trajectories was higher than the observed prevalence,
whereas the probability of being predicted to transition from CN to MCI or MCI to AD was generally
lower than or similar to the observed prevalence.

Female participants who were CN at baseline had a higher predicted probability of a CN-stable
trajectory (eFigure 5 in Supplement 1), with the difference (SD) ranging across 3 models from 0.2%
(0.9%) for the LR model to 0.7% (0.8%) for the RNN model. Conversely, the predicted probabilities
of MCI-stable and MCI-AD trajectories were lower for female compared with male participants, with
the difference (SD) ranging from 0.4% (0.7%) for the RNN model in the MCI-stable trajectory and
0.4% (0.7%) for the RNN model in the MCI-AD trajectory to 1.6% (0.7%) for the LR model in the
MCI-AD trajectory. These were similar to empirical differences in prevalence between male and
female participants. Notable differences between predicted and empirical probabilities were found
for male participants who were CN at baseline. Specifically, the difference (SD) between predicted
and observed probabilities of progressing to MCI was 13.8% (1.0%), 9.8% (3.6%), and 13.9% (5.0%)
for male participants for LR, SVM and RNN models, respectively, while for female participants, the
difference (SD) was 4.8% (1.0%), 1.5% (2.1%), and 5.0% (0.6%) for LR, SVM and RNN, respectively.
Across models, predictions based on the RNN model were more similar to empirical probabilities of
MCI progression compared with predictions from LR and SVM models (eFigure 6 in Supplement 1).

Predicted CN-stable and MCI-stable trajectories were higher for non-Hispanic participants
compared with Hispanic participants, consistent with the empirical distribution (eFigure 5 in
Supplement 1). Conversely, the predicted probability of progression from CN to MCI and MCI to AD
for non-Hispanic participants was lower than for Hispanic participants. The difference (SD) was 3.1%
(2.1%), 0.2% (2.3%), and 13.1% (3.4%) for CN progression and 11.8% (1.6%), 9.8% (10.7%), and 17.4%
(2.9%) for MCI progression across LR, SVM, and RNN models, respectively. The discrepancy (SD)
between predicted and observed probabilities for Hispanic participants was 17.2% (2.0%) and 31.3%
(10.7%) for the LR model, 16.9% (2.7%) and 8.8% (16.9%) for the SVM model, and 3.1% (6.0%) and
2.1% (12.4%) for the RNN model for CN progression and MCI progression, respectively.

Across racial groups, Asian participants had the lowest predicted probability of CN-stable and
MCI-stable trajectories and the highest predicted probability of progression from CN to MCI and MCI
to AD. Black participants had the highest predicted probability of the MCI-stable trajectory and the
lowest predicted probability of progression from CN to MCI and MCI to AD (eFigure 5 in
Supplement 1). Additionally, for CN-stable and CN-MCI trajectories, the largest differences between
predicted and observed values were for Asian participants, with a difference (SD) of 12.8% (1.6%),
11.5% (4.1%), and 14.4% (2.1%) higher (for the CN-stable trajectory) or lower (for the CN-MCI
trajectory) predicted values for LR, SVM, and RNN models, respectively (eFigure 5 in Supplement 1).
For MCI-stable and MCI-AD trajectories, Black participants had the largest difference (SD) between
predicted and observed values (12.6% [1.0%], 11.2% [1.3%], and 10.5% [1.3%] higher [for the
MCI-stable trajectory] or lower [for the MCI-AD] trajectory for LR, SVM, and RNN models,
respectively) (eFigure 5 in Supplement 1). These results indicate that Black participants with MCI at
baseline were more likely to be misclassified as progressing to AD. In contrast, Asian participants who
were CN at baseline were most likely to be misclassified as not progressing.

Discussion

In this prognostic study, we evaluated the fairness of ML models for predicting progression of AD
across groups defined by sex, race, and ethnicity. Due to differences in prevalence of progression for
males and females, ML models investigated did not satisfy the criterion of demographic parity (equal
predicted probability of progression) with respect to sex. All 3 models underpredicted the probability
of progressing from CN to MCI for male and female participants, but discrepancies between observed
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and predicted probabilities of progression were larger for male participants. This finding could be
attributable to greater heterogeneity of trajectories in males compared with females. Progression
from MCI to AD was also underpredicted by all models. However, this underprediction was less
severe for RNN compared with the other 2 models.

Models displayed unfairness with respect to multiple metrics across ethnicity groups. However,
uncertainty in estimates of TPR was high for Hispanic participants due to small sample sizes, making
it difficult to draw firm conclusions regarding model performance for this group. Notable
discrepancies between observed and predicted probabilities of transition from CN to MCI were
observed for Hispanic participants. These results highlight how underrepresentation may introduce
unfairness. In the ADNI data set, 4.0% of participants were Hispanic, and consequently, models
tended to perform poorly for this group. However, the deep-learning (RNN) model demonstrated
improved performance relative to the other 2 models through smaller differences between predicted
and observed probabilities of progression for Hispanic participants.

Estimates of model performance for participants in Asian, Black, and other race groups had
wide error bars due to limited sample sizes, especially in the 2 forward-transition cases (CN to MCI
and MCI to AD), making it difficult to draw conclusions. Thus, assessment of equal odds is limited for
these groups. Black participants in the MCI group at baseline tended to be incorrectly predicted to
transition to AD. Asian participants who were CN tended to be incorrectly underpredicted to
transition to MCI. A comparison of the 3 ML models demonstrated some improvement of the deep-
learning (RNN) model compared with other models. Notably, for individuals progressing to AD and
Black participants, RNN outperformed other models in that discrepancies between predicted
probability and observed prevalence of AD were smaller.

Sources of unfairness in ML models include sampling bias and implicit cultural biases that are
reflected in the data. The health domain may also feature systemic biases inherent in biological
processes that it may not be possible to mitigate.43 In the AD domain, there are neuropsychiatric
differences across racial and ethnic groups, some of which exist due to systemic racism, that are
associated with disease prevalence.25,44,45 Therefore, demographic parity may not be desirable
when real differences in AD disease prevalence exist. A feasible approach to evaluating fairness in this
setting may be to create a parity measure adjusted for demographics that incorporates a tolerance
for verified differences in prevalence across protected groups.46

Equal opportunity and equalized odds metrics (based on TPR and FPR) are desirable criteria to
satisfy because they represent equal performance accuracy of ML models across protected groups.
However, these metrics are limited. Equal opportunity considers only TPR and fails to encapsulate
other measures of diagnostic error or value, such as the positive predictive value of a model. The
appropriate metric to optimize in a given context depends on the intended use case.47 Metrics
considered in this study may help identify important normative questions about decision making, as
well as trade-offs and tensions between different potential interpretations of fairness.

Limitations
Our study has several limitations. The study is limited to 3 ML models (LR, SVM, and RNN models)
trained to perform the specific task of predicting a future disease state given historical information
and the disease state of individuals. It is not possible to extrapolate these results to fairness for other
models or prediction tasks. Additionally, the study found unfairness in AD progression prediction,
but it did not identify the source of unfairness in this context or how to mitigate it. Unfairness may
arise due to features of the data or algorithms, and our investigation did not distinguish between
these sources. Potential data biases include insufficient sample size in some groups and differential
misclassification of disease stage and informative missingness.35 Algorithmic bias arises when the
bias is not present in the input data but is added purely by the algorithm.48 It is generated by choices
in the algorithmic design, including choice of predictor variables, optimization function,
regularization, and loss function. Choices for each of these aspects of the algorithm may potentially
bias the outcome of the algorithms.17 Additionally, self-reported demographic and health information
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has the potential to facilitate observational studies of AD but may introduce bias in results when
groups in the cohort have different reporting approaches.49-51

Conclusions

In this prognostic study, 3 evaluated models performed well in aggregate but failed to satisfy metrics
of fairness with respect to some of the protected attributes we investigated. Investigations of equal
opportunity, equalized odds, and demographic parity found that models exhibited little unfairness
with respect to sex but had notable deficits in fairness across race and ethnicity groups. This study
highlights the potential for unfairness in ML-based AD prediction modeling and the importance of
devoting attention to mitigating bias and advancing health equity. Future work will investigate
mechanisms by which a model’s design, data, and deployment may lead to disparities in AD.
Developing a fairness-constrained model may be one avenue to address fairness challenges found in
this study.
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