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Abstract

Objectives: Discussions of fairness in criminal justice risk assessments typi-
cally lack conceptual precision. Rhetoric too often substitutes for careful
analysis. In this article, we seek to clarify the trade-offs between different kinds
of fairness and between fairness and accuracy. Methods: We draw on the
existing literatures in criminology, computer science, and statistics toprovide an
integrated examination of fairness and accuracy in criminal justice risk assess-
ments. We also provide an empirical illustration using data from arraignments.
Results: We show that there are at least six kinds of fairness, some of which
are incompatible with one another and with accuracy. Conclusions: Except
in trivial cases, it is impossible to maximize accuracy and fairness at the same
time and impossible simultaneously to satisfy all kinds of fairness. In practice,
a major complication is different base rates across different legally protected
groups. There is a need to consider challenging trade-offs. These lessons
apply to applications well beyond criminology where assessments of risk can
be used by decision makers. Examples include mortgage lending, employ-
ment, college admissions, child welfare, and medical diagnoses.
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The use of actuarial risk assessments in criminal justice settings has of late

been subject to intense scrutiny. There have been ongoing discussions about

how much better in practice risk assessments derived from machine learning

perform compared to risk assessments derived from older, conventional

methods (Berk 2012; Berk and Bleich 2013; Brennan and Oliver 2013; Liu

et al. 2011; Rhodes 2013; Ridgeway 2013a, 2013b). We have learned that

when relationships between predictors and the response are complex,

machine learning approaches can perform far better. When relationships

between predictors and the response are simple, machine learning

approaches will perform about the same as conventional procedures.

Far less close to resolution are concerns about fairness raised by the media

(Angwin et al. 2016; Cohen 2012; Crawford 2016; Dieterich et al. 2016;

Doleac and Stevenson 2016), government agencies (National Science and

Technology Council 2016:30-32), foundations (Pew Center of the States

2011), and academics (Berk 2008; Berk and Hyatt 2015; Demuth 2003;

Hamilton 2016; Harcourt 2007; Hyatt, Chanenson, and Bergstrom 2011;

Starr 2014b; Tonry 2014).1 Even when direct indicators of protected group

membership, such as race and gender, are not included as predictors, asso-

ciations between these measures and legitimate predictors can “bake in”

unfairness. An offender’s prior criminal record, for example, can carry for-

ward earlier, unjust treatment not just by criminal justice actors but by an

array of other social institutions that may foster disadvantage.

As risk assessment critic Sonja Starr (2014a) writes,

While well intentioned, this approach [actuarial risk assessment] is misguided.

The United States inarguably has a mass-incarceration crisis, but it is poor

people and minorities who bear its brunt. Punishment profiling will exacerbate

these disparities—including racial disparities—because the risk assessments

include many race-correlated variables. Profiling sends the toxic message that

the state considers certain groups of people dangerous based on their identity.

It also confirms the widespread impression that the criminal justice system is

rigged against the poor. (pp. A17)

On normative grounds, such concerns can be broadly legitimate, but

without far more conceptual precision, it is difficult to reconcile competing

claims and develop appropriate remedies. The debates can become rhetorical

exercises, and few minds are changed.
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This article builds on recent developments in computer science and sta-

tistics in which fitting procedures, often called algorithms, can assist criminal

justice decision-making by addressing both accuracy and fairness.2 Accuracy

is formally defined by out-of-sample performance using one or more con-

ceptions of prediction error (Hastie, Tibshirani, and Friedman 2009:section

7.2). There is no ambiguity. But, even when attempts are made to clarify

what fairness can mean, there are several different kinds that can conflict

with one another and with accuracy (Berk 2016b).

Examined here are different ways that fairness can be formally defined,

how these different kinds of fairness can be incompatible, how risk assess-

ment accuracy can be affected, and various algorithmic remedies that have

been proposed. The perspectives represented are found primarily in statistics

and computer science because those disciplines are the source of modern risk

assessment tools used to inform criminal justice decisions.

No effort is made here to translate formal definitions of fairness into

philosophical or jurisprudential notions in part because the authors of this

article lack the expertise and in part because that multidisciplinary con-

versation is just beginning (Barocas and Selbst 2016; Ferguson 2015; Jans-

sen and Kuk 2016; Kroll et al. 2017). Nevertheless, an overall conclusion

will be that you can’t have it all. Rhetoric to the contrary, challenging trade-

offs are required between different kinds of fairness and between fairness

and accuracy.

Although for concreteness, criminal justice applications are the focus, the

issues readily generalize to a very wide range of risk assessment applications.

For example, decisions made by banks about whom to grant mortgage loans

rest heavily on risk assessments for the chances that the loan will be repaid.

Employers commonly do background checks to help determine whether a job

applicant will be a reliable employee. Child welfare agencies typically

decide when a minor should be placed in foster care based in part of the

predicted risk from remaining in their current residence.

Confusion Tables, Accuracy, and Fairness: A Prologue

For ease of exposition and with no important loss of generality, Y is the

response variable, henceforth assumed to be binary, and there are two

legally protected group categories: men and women. We begin by introdu-

cing by example some key ideas needed later to define fairness and accu-

racy. We build on the simple structure of a 2 � 2 cross-tabulation (Berk

2016b; Chouldechova 2017; Hardt, Price, and Srebro 2016). Illustrations

follow shortly.
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Table 1 is a cross-tabulation of the actual binary outcome Y by the pre-

dicted binary outcome Ŷ . Such tables are in machine learning often called a

“confusion table” (also “confusion matrix”). Ŷ is the fitted values that result

when an algorithmic procedure is applied in the data. A “failure” is called a

“positive” because it motivates the risk assessment; a positive might be an

arrest for a violent crime. A “success” is a “negative,” such as completing a

probation sentence without any arrests. These designations are arbitrary but

allow for a less abstract discussion.3

The left margin of the table shows the actual outcome classes. The top

margin of the table shows the predicted outcome classes.4 Cell counts

internal to the table are denoted by letters. For example, “a” is the

number of observations in the upper left cell. All counts in a particular

cell have the same observed outcome class and the same predicted out-

come class. For example, “a” is the number of observations for which the

observed response class is a failure and the predicted response class is a

failure. It is a true positive. Starting at the upper left cell and moving

clockwise around the table are true positives, false negatives, true nega-

tives, and false positives.

The cell counts and computed values on the margins of the table can

be interpreted as descriptive statistics for the observed values and fitted

values in the data on hand. Also common is to interpret the computed

values on the margins of the table as estimates of the corresponding

probabilities in a population. We turn to that later. For now, we just

consider descriptive statistics.

There is a surprising amount of descriptive information that can be

extracted from the table. We will use the following going forward.5

Table 1. A Cross-tabulation of the Actual Outcome by the Predicted Outcome
When the Prediction Algorithm Is Applied to a Data Set.

Truth Failure Predicted Success Predicted
Conditional

Procedure Error

Failure—a positive a b b=ðaþ bÞ
True positives False negatives False negative rate

Success—a negative c d c=ðcþ dÞ
False positives True negatives False positive rate

Conditional use error c=ðaþ cÞ b=ðbþ dÞ ðcþbÞ
ðaþbþcþdÞ

Failure prediction
error

Success prediction
error

Overall procedure
error
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1. Sample size—The total number of observations conventionally

denoted by N : aþ bþ cþ d.

2. Base rate—The proportion of actual failures, which is

ðaþ bÞ=ðaþ bþ cþ dÞ, or the proportion of actual successes,

which is ðcþ dÞ=ðaþ bþ cþ dÞ.
3. Prediction distribution—The proportion predicted to fail and the

proportion predicted to succeed: ðaþ cÞ=ðaþ bþ cþ dÞ and

ðbþ dÞ=ðaþ bþ cþ dÞ, respectively.

4. Overall procedure error—The proportion of cases misclassified:

ðbþ cÞ=ðaþ bþ cþ dÞ.
5. Conditional procedure error—The proportion of cases incorrectly

classified conditional on one of the two actual outcomes:

b=ðaþ bÞ, which is the false negative rate, and c=ðcþ dÞ, which is

the false positive rate.

6. Conditional use error—The proportion of cases incorrectly predicted

conditional on one of the two predicted outcomes: c=ðaþ cÞ, which

is the proportion of incorrect failure predictions, and b=ðbþ dÞ,
which is the proportion of incorrect success predictions.6 We use the

term conditional use error because when risk is actually determined,

the predicted outcome is employed; this is how risk assessments are

used in the field.

7. Cost ratio—The ratio of false negatives to false positives b=c or

the ratio of false positives to false negatives c=b. When b and c

are the same, the cost ratio is one, and false positives have same

weight as false negatives. If b is smaller than c, b is more costly.

For example, if b ¼ 20 and c ¼ 60, false negatives are three times

more costly than false positives. One false negative is “worth”

three false positives. In practice, b can be more or less costly

than c. It depends on the setting.

The discussion of fairness to follow uses all of these features of Table 1,

although the particular features employed will vary with the kind of fairness.

We will see, in addition, that the different kinds of fairness can be related to

one another and to accuracy. But before getting into a more formal discus-

sion, some common fairness issues will be illustrated with three hypothetical

confusion tables.

Table 2 is a confusion table for a hypothetical set of women released on

parole. Gender is the protected individual attribute. A failure on parole is a

“positive,” and a success on parole is a “negative.” For ease of exposition, the

counts are meant to produce a very simple set of results.
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The base rate for success is .50 because half of the women are not rear-

rested. The algorithm correctly predicts that the proportion who succeed on

parole is .50. This is a favorable initial indication of the algorithm’s perfor-

mance because the marginal distribution of Y and Ŷ is the same.

Some call this “calibration” and assert that calibration is an essential

feature of any risk assessment tool. Imagine the alternative: 70 percent of

women on parole are arrest free, but the risk assessment projects that 50

percent will be arrest free. The instrument’s credibility is immediately under-

mined. But calibration sets are a very high standard that existing practice

commonly will fail to meet. Do the decisions of police officers, judges,

magistrates, and parole boards perform at the calibration standard? Perhaps

a more reasonable standard is that the any risk tool just needs perform better

than current practice. Calibration in practice is different from calibration in

theory, although the latter is a foundation for much formal work on risk

assessment fairness. We will return to these issues later.7

The false negative rate and false positive rate of .40 are the same for

successes and failures. When the outcome is known, the algorithm can cor-

rectly identify it 60 percent of the time. Usually, the false positive rate and

the false negative rate are different, which complicates overall performance

assessments.

Because here the number of false negatives and false positives is the same

(i.e., 200), the cost ratio is 1 to 1. This too is empirically atypical. False

negatives and false positives are equally costly according to the algorithm.

Usually, they are not.

The prediction error of .40 is the same for predicted successes and pre-

dicted failures. When the outcome is predicted, the prediction is correct

Table 2. Females: Fail or Succeed on Parole (Success Base Rate ¼ 500/1,000 ¼ .50,
Cost Ratio ¼ 200/200 ¼ 1:1, and Predicted to Succeed 500/1,000 ¼ .50).

Truth Ŷ fail Ŷsucceed

Conditional
Procedure Error

Yfail—positive 300 200 .40
True positives False negatives False negative rate

Ysucceed—negative 200 300 .40
False positives True negatives False positive rate

Conditional use error .40 .40
Failure prediction

error
Success prediction

error
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60 percent of the time. Usually, prediction error will differ between predicted

successes and predicted failures.

Each of these measures can play a role in fairness assessments. We do not

consider fairness yet because Table 2 shows only the results for women.

Fairness is addressed across two or more confusion tables one for each

protected class.

Table 3 is a confusion table for a hypothetical set of men released on

parole. To help illustrate fairness concerns, the base rate for success on

parole is changed from .50 to .33. Men are substantially less likely to succeed

on parole than women. The base rate was changed by multiplying the top row

of cell counts in Table 2 by 2.0. That is the only change made to the cell

counts. The bottom row of cell counts is unchanged.

Although the proportion of women predicted to succeed on parole corre-

sponds to the actual proportion of women who succeed, the proportion of

men predicted to succeed on is a substantial overestimate of the actual

proportion of men who succeed. For men, the distribution of Y is not the

same as the distribution of Ŷ . There is a lack of calibration for men. Some

might argue that this makes all the algorithmic results less defensible for men

because an essential kind of accuracy has been sacrificed. (One would arrive

at the same conclusion using predictions of failure on parole.) Fairness issues

could arise in practice if decision makers, noting the disparity between the

actual proportion who succeed on parole and the predicted proportion who

succeed on parole, discount the predictions for men, implicitly introducing

gender as an input to the decision to be made.

The false negative and false positive rates are the same and unchanged at

.40. Just as for women, when the outcome is known, the algorithm can

Table 3. Males: Fail or Succeed on Parole (Success Base Rate ¼ 500/1,500 ¼ .33,
Cost Ratio 400/200 ¼ 2:1, and Predicted to Succeed 700/1,500 ¼ .47).

Truth Ŷ fail Ŷsucceed

Conditional
Procedure Error

Yfail—positive 600 400 .40
True positives False negatives False negative rate

Ysucceed—negatives 200 300 .40
False positives True negative False positive rate

Conditional use error .25 .57
Failure prediction

error
Success prediction

error
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correctly identify it 60 percent of the time. There are usually no fairness

concerns when a confusion table measure being examined does not differ by

protected class.

Failure prediction error is reduced from .40 to .25, and success prediction

error is increased from .40 to .57. Men are more often predicted to succeed on

parole when they actually do not. Women are more often predicted to fail on

parole when they actually do not. If predictions of success on parole make a

release more likely, some would argue that the prediction errors lead to

decisions that unfairly favor men. Some would assert more generally that

different prediction error proportions for men and women are by itself a

source of unfairness.

Whereas in Table 2, .50 of the women are predicted to succeed overall, in

Table 3, .47 of the men are predicted to succeed overall. This is a small

disparity in practice, but it favors women. If decisions are affected, some

would call this unfair, but it is a different source of unfairness than disparate

prediction errors by gender.

Finally, although the cost ratio in Table 2 for women makes false positives

and false negatives equally costly (1 to 1), in Table 3, false positives are

twice as costly as false negatives. Incorrectly classifying a success on parole

as failure is twice as costly for men (2 to 1). This too can be seen as unfair if it

affects decisions. Put another way, individuals who succeed on parole but

who would be predicted to fail are potentially of greater relative concern

when the individual is a man.

It follows arithmetically that all of these potential unfairness and accuracy

problems surface solely by changing the base rate even when the false

negative rate and false positive rate are unaffected. Base rates can matter a

great deal, a theme to which we will return. Base rates also matter substan-

tially for a wide range of risk assessment settings such as those mentioned

earlier. For example, diabetes base rates for Hispanics, blacks, and Native

Americans can be as much as double the base rates for non-Hispanic whites

(American Diabetes Association 2018). One consequence, other things

equal, would be larger prediction errors for those groups when a diagnosis

of diabetes is projected, implying a greater chance of false positives. The

appropriateness of different medical interventions could be affected as a

consequence.

We will see later that there are a number of proposals that try to correct for

various kinds of unfairness, including those illustrated in the comparisons

between Tables 2 and 3. For example, it is sometimes possible to tune

classification procedures to reduce or even eliminate some forms of

unfairness.
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In Table 4, for example, the success base rate for men is still .33, but the

cost ratio for men is tuned to be 1 to 1. Now, when success on parole is

predicted, it is incorrect 40 times of the 100 and corresponds to .40 success

prediction error for women. When predicting success on parole, one has

equal accuracy for men and women. A kind of unfairness has been elimi-

nated. Moreover, the fraction of men predicted to succeed on parole now

equals the actual fraction of men who succeed on parole. There is calibration

for men. Some measure of credibility has been restored to their predictions.

However, the false negative rate for men is now .20, not .40, as it is for

women. In trade, therefore, when men actually fail on parole, the algorithm is

more likely than for women to correctly identify it. By this measure, the

algorithm performs better for men. Trade-offs like these are endemic in

classification procedures that try to correct for unfairness. Some trade-offs

are inevitable, and some are simply common. This too is a theme to which we

will return.

The Statistical Framework

We have considered confusion tables as descriptive tools for data on hand.

The calculations on the margins of the table are proportions. Yet those

proportions are often interpreted as probabilities. Implicit are properties that

cannot be deduced from the data alone. Commonly, reference to a data

generation process is required (Berk 2016a:section 1.4; Kleinberg, Mullai-

nathan, and Raghavan 2016). For clarity and completeness, we need to

consider that data generation process.

There are practical concerns as well requiring a “generative” formulation.

In many situations, one wants to draw inferences beyond the data being

Table 4. Males Tuned: Fail or Succeed on Parole (Success Base Rate ¼ 500/1,500 ¼
.33, Cost Ratio ¼ 200/200 ¼ 1:1, and Predicted to Succeed 500/1,500 ¼ .33).

Truth Ŷ fail Ŷsucceed

Conditional
Procedure Error

Yfail—positive 800 200 .20
True positives False negatives False negative rate

Ysucceed—negative 200 300 .40
False positives True negatives False positive rate

Conditional use error .20 .40
Failure prediction

error
Success prediction

error
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analyzed. Then, the proportions can be seen as statistical estimates. For

example, a confusion table for release decisions at arraignments from a given

month might be used to draw inferences about a full year of arraignments in

that jurisdiction (Berk and Sorenson 2016). Likewise, a confusion table of

the housing decisions made for prison inmates (e.g., low-security housing vs.

high-security housing) from a given prison in a particular jurisdiction might

be used to draw inferences about placement decisions in other prisons in the

same jurisdiction (Berk and de Leeuw 1999).8 But perhaps most important,

algorithmic results from a given data set are commonly used to inform

decisions in the future. Generalizations are needed over time.

Under such circumstances, one needs a formal rationale for how the data

came to be and for the estimation target. In conventional survey sample

terms, one must specify a population and one or more population parameters

whose values are to be estimated from the data. Probability sampling then

provides the requisite justification for statistical inference.

There is a broader formulation that is usually more appropriate for algo-

rithmic procedures. The formulation has each observation randomly realized

from a single joint probability distribution. This is a common approach in

computer science, especially for machine learning (Bishop 2006: section 1.5;

M. J. Kearns 1994:section 1.2), and also can be found in econometrics (White

1980) and statistics (Buja et al. 2018a; Freedman 1981).

Table 5 summarizes the notation to follow. We denote the parent, joint

probability distribution by PðY ; L; SÞ. Y is the outcome of interest. An arrest

while on probation is an illustration. L includes “legitimate” predictors such

as prior convictions. S includes “protected” predictors such as race, ethnicity,

and gender, sometimes called “suspect” variables.9 In computer science,

Table 5. Notation for Statistical Concepts.

Notation Meaning

Y Response variable (numeric or categorical)
L Legitimate predictors
S Predictors for protected classes
PðY; L; SÞ Parent joint probability distribution
EðYjL; SÞ True response surface
f ðF; SÞ True response function
f �ðL; SÞ True response function approximation
hðL; SÞ Fitting procedure
f̂
�ðL; SÞ Fitted approximation structure

Ŷ Fitted approximate values of the response
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PðY ; L; SÞ often is called a “target population.” The data on hand are a set of

IID realized observations from PðY ; L; SÞ.10 In some branches of computer

science, such as machine learning, each realized observation is called an

“example.”11

PðY ;L; SÞ has all of the usual moments, which is a harmless assumption in

practice. From this, the population can be viewed as the limitless number of

observations that could be realized from the joint probability distribution (as

if by random sampling), each observation an IID realized case. Under this

conception of a population, all moments and conditional moments are neces-

sarily expectations.

Because PðY ; L; SÞ is the source of the data, features of this joint prob-

ability distribution shape the estimation enterprise. There is in the target

population some true function of L and S, f ðL; SÞ, linking the predictors to

the conditional expectations of Y : EðY jL; SÞ. When Y is categorical, these

conditional expectations are conditional probabilities. EðY jL; SÞ is the “true

response surface.”

The true response function is assumed to be unknown.12 However, there is

in the population an approximation, f �ðL; SÞ, of the true response function. It

can be called the “best” approximation if in principle it could be a product of

some loss minimization procedure such as appropriate estimating equations

(Buja et al. 2018b).13 The approximation is then “best” by that criterion.

The best approximation f �ðL; SÞ is specified pragmatically from the data

on hand. In a modeling setting, it might be called a “working model.” In an

algorithmic setting, it might be called a “heuristic.” No claims are made that

it corresponds to the true response function.14

A fitting procedure, hðL; SÞ, is applied to the data. The result f̂
�ðL; SÞ is an

estimate of f �ðL; SÞ, not f ðL; SÞ. Often, one is able to compute asymptotically

unbiased estimates of key f �ðL; SÞ features (e.g., generalization error)

coupled with valid statistical tests and confidence intervals (Buja et al.

2018b).15 Usually, the most important feature of f �ðL; SÞ estimated by

f̂
�ðL; SÞ is the fitted values Ŷ . They are estimates of the true response surface

approximation. It is often possible to compute point-by-point confidence

intervals for each Ŷ , understanding that these are proper intervals for the

approximate response surface, not the true response surface.

Consider a simple illustration to help fix these ideas. Suppose the true

response function in some population is a high-order polynomial conditioned

on several predictors. The true response surface lies in the space defined by

those predictors and is comprised of the expectation of Y for each config-

uration of x values. There is a population approximation of the true response

function computed in principle by least squares that is a linear function of the
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same predictors. The linear function is then the best linear approximation of

the true response function. Its fitted values, for each configuration of x

values, constitute an approximation in the population of the true response

surface. Data are realized from the joint probability distribution as if by

simple random sampling. A working linear regression model is specified

using the same predictors and the same response. Its regression coefficients

and disturbance variance are estimated by way of least squares. The regres-

sion fitted values for each configuration of x values are estimates of the

approximation response surface. All of these estimates are asymptotically

unbiased for the approximation. Valid statistical tests and confidence inter-

vals can follow. Perhaps the major difference in practice is that far more

flexible fitting procedures than linear regression are employed, and the true

response surface can be far more complex than a polynomial.

Whether such conceptual scaffolding makes sense for real data depends

on substantive knowledge and knowledge about how the data were actually

produced. For example, one might be able to make the case that for a par-

ticular jurisdiction, all felons convicted in a given year can usefully be seen

as IID realizations from the population of all convicted felons that could have

been produced that year and perhaps for a few years before and a few years

after. One would need to argue that for the given year, or proximate years,

there were no meaningful changes in any governing statutes, the composition

of the sitting judges, the mix of felons, and the practices of police, prosecu-

tors, and defense attorneys. A more detailed consideration would for this

article be a distraction and is discussed elsewhere in an accessible linear

regression setting (Berk, Brown et al. 2017).

Defining Fairness

Definitions of Algorithmic Fairness

We are now ready to consider definitions of algorithmic fairness. Instructive

definitions can be found in computer science (Calmon et al. 2017; Choulde-

chova 2017; Dwork et al. 2012; Friedler, Scheidegger, and Venkatasubra-

manian 2016; Hardt et al. 2016; Joseph et al. 2016; Kamishima, Akaho, and

Sakuma 2011; Kamiran and Calders 2012; Kleinberg et al. 2016; Pedreschi,

Ruggieri, and Turini 2008), criminology (Angwin et al. 2016; Berk 2016b;

Dieterich, Mendoza, and Brennan 2016), and statistics (Corbett-Davies et al.

2017; Johnson, Foster, and Stine 2016; Johndrow and Lum 2017). All are

recent and focused on algorithms used to inform real-world decisions in both

public and private organizations.

14 Sociological Methods & Research 50(1)



Each definition is broadly similar in intent. What matters is some defini-

tion of equality for protected groups. But the definitions can differ in sub-

stantive and technical details. There can be frustrating variation in notation

combined with subtle differences in how key concepts are operationalized.

There can also be a conflation of training data properties, performance of an

algorithm, and decisions that can follow.16 We focus here on algorithms and

the data on which they are trained. How actions are affected is a very

important, but different, matter (Berk 2017; Kleinberg et al. 2017).

Much of the formal theory on algorithmic fairness is derived for risk

instruments that output some form of risk score. Often, the risk score is a

probability. An outcome class is assigned by imposing some threshold on the

risk score. For example, if for a given offender, the instrument’s probability

of an arrest on parole is greater than .50, a class of “high risk” can be

assigned. Our discussion of fairness is agnostic about how outcome classes

are assigned by an algorithm and about the algorithmic procedure used. This

makes the discussion more general and, we hope, more accessible. As before,

we proceed with confusion tables.

In order to provide clear definitions of algorithmic fairness, we will pro-

ceed for now as if f̂
�ðL; SÞ estimates are the same as the corresponding

population values. In this way, we do not complicate a discussion of fairness

with concerns about estimation (i.e., inferences from the realized data to

features of the joint probability distribution). Estimation is addressed later.

The notation is drawn from Table 1, but there will be a separate confusion

table for each class in the protected group. Comparisons are made between

these tables. Consistent with much of the extant fairness literature, we build

on algorithmic accuracy rather than algorithmic error.17 As before, a failure

on parole is called a positive and a success on parole is called a negative.

1. Overall accuracy equality is achieved by f̂
�ðL; SÞ when overall pro-

cedure accuracy is the same for each class of a protected group (e.g.,

men and women). That is, ðaþ dÞ=ðaþ bþ cþ dÞ should be the

same (Berk 2016b). This definition assumes that true negatives are

as desirable as true positives. In many settings they are not, and a

cost-weighted approach is required. For example, true negatives (i.e.,

successes on parole) may be twice as desirable as true positives (i.e.,

failures on parole). Or put another way, false negatives may be two

times less desirable than false positives. Overall accuracy equality is

not commonly used because it does not distinguish between accuracy

for positives and accuracy for negatives. Nevertheless, it has been

mentioned in some media accounts (Angwin et al. 2016) and is
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related in spirit to “accuracy equity” as used by Dieterich and col-

leagues (2016).18

2. Statistical parity is achieved by f̂
�ðL; SÞ when the marginal distribu-

tions of the predicted outcome classes are the same for each class of

a protected group (e.g., Muslims and Christians). That is,

ðaþ cÞ=ðaþ bþ cþ dÞ and ðbþ dÞ=ðaþ bþ cþ dÞ, although

typically different from one another, are the same for both protected

group classes (Berk 2016b). For example, the proportion of inmates

predicted to succeed on parole (i.e., negatives) should be the same for

Muslim and Christian parolees. When this holds, it also holds for

predictions of failure on parole (i.e., positives) because the outcome

is binary. This definition of statistical parity, sometimes called

“demographic parity,” has been criticized because it can lead to

highly undesirable decisions for individuals (Dwork et al. 2012). One

might incarcerate Muslims who pose no public safety risk so that the

same proportions of Muslims and Christians are released on parole.

Our definition is much like statistical parity as defined by Choulde-

chova (2017:4), although she requires an underlying risk score with

the “high-risk” class determined by score values above a certain

threshold.

3. Conditional procedure accuracy equality is achieved by f̂
�ðL; SÞ

when conditional procedure accuracy is the same for both protected

group classes (Berk 2016b). In our notation, a=ðaþ bÞ is the same

for, say, African Americans and whites, and d=ðcþ dÞ is the same for

African Americans and whites. Conditioning on the known outcome,

is f̂
�ðL; SÞ equally accurate across protected group classes? This is the

same as considering whether the false negative rate and the false

positive rate, respectively, are the same for African Americans and

whites. Conditional procedure accuracy equality is a common con-

cern in criminal justice applications (Dieterich et al. 2016). Hardt and

his colleagues (2016:2-3) use the term “equalized odds” for a closely

related definition, and there is a special case they call “equality of

opportunity” that effectively is the same as our conditional procedure

accuracy equality, but only for the outcome class that is more desir-

able.19 Chouldechova (2017:4) uses the term “error rate balance” for

conditional procedure accuracy equality, but, as before, requires a

threshold on a risk score to arrive at a high-risk class.

4. Conditional use accuracy equality is achieved by f̂
�ðL; SÞ when con-

ditional use accuracy is the same for both protected group classes

(Berk 2016b). One is conditioning on the algorithm’s predicted
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outcome not the actual outcome. That is, a=ðaþ cÞ is the same for

individuals, say, born in the United States and for U.S. citizens born

elsewhere, and d=ðbþ dÞ is the same for individuals born in the

United States and for U.S. citizens born elsewhere. Conditional use

accuracy equality has also been a common concern in criminal justice

risk assessments (Dieterich et al. 2016). Conditional on the prediction

of success (or failure), is the projected probability of success (or

failure) the same across protected group classes? If not, membership

in a protected groups class is associated with conditional use accu-

racy. Chouldechova (2017:3-4) calls this “predictive parity.” Choul-

dechova would also say that in our confusion table setting, a risk

instrument delivering predictive parity is “well calibrated.”20

5. Treatment equality is achieved by f̂
�ðL; SÞ when the ratio of false

negatives and false positives (i.e., c=b or b=c) is the same for both

protected group categories. The term “treatment” is used to convey

that such ratios can be a policy lever with which to achieve other

kinds of fairness. For example, if false negatives are treated as more

costly for men than women so that conditional procedure accuracy

equality can be achieved, men and women are being treated differ-

ently by the algorithm (Feldman et al. 2015). Incorrectly classifying a

failure on parole as a success (i.e., a false negative), say, is a bigger

mistake for men. The relative numbers of false negatives and false

positives across protected group categories also can by itself be

viewed as a problem in criminal justice risk assessments (Angwin

et al. 2016). Chouldechova (2017:4) addresses similar issues, but

through the false negative rate and the false positive rate: our

b=ðaþ bÞ and c=ðcþ dÞ, respectively.

6. Total fairness is achieved by f̂
�ðL; SÞ when (1) overall accuracy

equality, (2) statistical parity, (3) conditional procedure accuracy

equality, (4) conditional use accuracy equality, and (5) treatment

equality are all achieved. Although a difficult pill for some to swal-

low, we will see that in practice, total fairness cannot be achieved

except in highly artificial simulations.

Each of the definitions of fairness applies when there are more than two

outcome categories. However, there are more statistical summaries that need

to be reviewed. For example, when there are three response classes, there are

three ratios of false negatives to false positives to be examined.

There are also other definitions of fairness not discussed because they

currently cannot be operationalized in a useful manner. For example, nearest
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neighbor parity is achieved if similarly situated individuals are treated simi-

larly (Dwork et al. 2012). Similarly situated is measured by the Euclidian

distance between the individuals in predictor space. Unfortunately, the units

in which the predictors are measured can make an important difference, and

standardizing them just papers over the problem. Nevertheless, the ideas

introduced are very important from both a statistical and jurisprudential point

of view.21

Estimation Accuracy

We build again on work by Buja and his colleagues (2018a). When the pro-

cedure hðL; SÞ is applied to the IID data, some will argue that the estimation

target is the true response surface. But even asymptotically, there is no credible

claim that the true response surface is being estimated in an unbiased manner.

The same applies to the probabilities from a cross-tabulation of Y by Ŷ .

With larger samples, the random estimation error is smaller. On the aver-

age, the estimates are closer to the truth. However, the gap between the

estimates and the truth combines bias and variance. That gap is not a con-

ventional confidence interval, nor can it be transformed into one. One would

have to remove the bias, and to remove the bias, one would need to compare

the estimates to the unknown truth.

Alternatively, the estimation target for hðL; SÞ can be an acknowledged

approximation of the true response surface. In the population, the approx-

imation has the same structure as hðL; SÞ so that the algorithm becomes a

plug-in estimator. Therefore, estimates of probabilities from Table 1 can be

estimates of the corresponding probabilities from a Y by Ŷ cross-tabulation

as if hðL; SÞ were applied in the population. Thanks to the IID nature of the

data, these estimates can also be asymptotically unbiased so that in large

samples, the bias will likely be relatively small. This allows one to use

sample results to address fairness as long as one appreciates that it is fairness

measured by the approximation, not the true EðY jL; SÞ.
Estimation accuracy is addressed by out-sample performance. Fitted val-

ues in-sample will be subject to overfitting. In practice, this means using test

data, or an approximation thereof (e.g., cross-validation), with measures of

fit such as generalization error or expected prediction error (Hastie et al.

2009: section 7.2). Often, good estimates of accuracy may be obtained, but

the issues can be tricky. Depending on the procedure hðL; SÞ and the avail-

ability of an instructive form of test data, there are different tools that vary in

their assumptions and feasibility (Berk 2016a). With our focus on fairness,

such details are a diversion.22 The fairness issues are unchanged.
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Trade-offs

We turn to trade-offs and begin by emphasizing an obvious point that can get

lost in discussions of fairness. If the goal of applying hðL; SÞ is to capitalize

on nonredundant associations that L and S have with the outcome, excluding

S will reduce accuracy. Any procedure that even just discounts the role of S

will lead to less accuracy. The result is a larger number of false negatives and

false positives. For example, if hðLÞ is meant to help inform parole release

decisions, there will likely be an increase in both the number of inmates who

are unnecessarily detained and the number of inmates who are inappropri-

ately released. The former victimizes inmates and their families. The latter

increases the number of crime victims. But fairness counts too, so we need to

examine trade-offs.

Because the different kinds of fairness defined earlier share cell counts

from the cross-tabulation of Y against Ŷ , and because there are relation-

ships between the cell counts themselves (e.g., they sum to the total

number of observations), the different kinds of fairness are related as

well. It should not be surprising, therefore, that there can be trade-offs

between the different kinds of fairness. Arguably, the trade-off that has

gotten the most attention is between conditional use accuracy equality

and the false positive and false negative rates (Angwin et al. 2016;

Chouldechova 2017; Dieterich et al. 2016; Kleinberg et al. 2016; Pleiss

et al. 2017). It is also the trade-off that to date has the most complete

mathematical results.

Some Proven “Impossibility Theorems”

We have conveyed informally that there are incompatibilities between dif-

ferent kinds of fairness. It is now time to be specific. We begin with three

definitions. They will be phrased in probability terms but are effectively the

same if phrased in terms of proportions.

� Calibration—Calibration was introduced earlier. Suppose an algo-

rithm produces a probability risk score that can then be used to assign

an outcome class. “Calibration within groups requires that for each

group t, and each bin b with associated score ub, the expected number

of people from group t in b who belong to the positive class should be

a ub fraction of the expected number of people from group t assigned

to b (Kleinberg et al. 2016:4). Here, a “positive” would be a rearrest on

parole. For example, if the risk score in a probability metric is .37, the

predicted probability of recidivism should also be .37.
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Calibration can become a fairness matter if there is calibration within one

group but not within the other. A decision maker may be inclined to take the

predictions less seriously for the group that lacks calibration (Kleinberg et al.

2016; Pleiss et al. 2017). Essentially, the same fairness issues arise under

Chouldechova’s (2017) definition of predictive parity, although the risk

score does not have to be in a probability metric, and for our definition of

conditional use accuracy equality, within a confusion table formulation.

� Base rate—This too was introduced earlier. In the population, base

rates are determined by the marginal distribution of the response,

defined by the probability of each outcome class. For example, the

base rate for succeeding on parole might be .65 and for not succeeding

on parole is then .35. If there are C outcome classes, there will be C

base rate probabilities.

We are concerned here with base rates for different protected group

classes, such as men compared to women. Base rates for each protected

group class are said to be equal if they are identical. Is the probability of

succeeding on parole .65 for both men and women?

� Separation—In a population, the observations are separable if for

each possible configuration of predictor values, there is some

hðL; SÞ for which the probability of membership in a given outcome

class is always either 1.0 or 0.0. In other words, perfectly accurate

classification is possible. In practice, what matters is whether there is

perfect classification when hðL; SÞ is applied to data.

And now the impossibility results: When the base rates differ by protected

group and when there is not separation, one cannot have both calibration

and equality in the false negative and false positive rates (Kleinberg et al.

2016). For Chouldechova’s formulation (2017:5), if “the base rate differs

across groups, any instrument that satisfies predictive parity at a given

threshold . . . must have imbalanced false positive or false negative errors

rates at that threshold” (emphasis in the original). Within our formulation,

when base rates for protected group classes differ, one cannot have simulta-

neously conditional use accuracy equality and, across protected group

classes, equal false positive and false rates.

The implications of the impossibility results are huge. First, if there is

variation in base rates and no separation, you can’t have it all. The goal of

complete race or gender neutrality is unachievable. In practice, both require-

ments are virtually never met, except in highly stylized examples.
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Second, altering a risk algorithm to improve matters can lead to difficult

stakeholder choices. For example, if it is essential to have conditional use

accuracy equality, the algorithm will produce different false positive and

false negative rates across the protected group categories. Conversely, if it

is essential to have the same rates of false positives and false negatives across

protected group categories, the algorithm cannot produce conditional use

accuracy equality. Stakeholders will have to settle for an increase in one for

a decrease in the other.

Third, there are other kinds of fairness that are in play but are unaddressed

in the existing proofs. To arrive at mathematically tractable problems, sim-

plifications are often required. We will see shortly that this affects the algo-

rithmic remedies proposed and their potential reception by stakeholders. For

example, anything that downweights the importance of certain predictors for

one protected group but not another can introduce a form of treatment

inequality. In service of statistical parity, for instance, one might give less

weight to prior arrests for men than for women even though the consequences

of prior crimes for crime victims are the same and conditional use accuracy

likely will be reduced for men. To see how these moving parts can interact,

consider the following didactic illustrations.

Trivial case #1: Assigning the same outcome class to all. Suppose hðL; SÞ assigns

the same outcome class to everyone (e.g., a failure). Such an assignment

procedure would never be used in practice, but it raises some important

issues in a simple setting. Tables 6 and 7 provide an example when the base

rates are the same for men and women. There are 500 men and 50 women,

but the relative representation of men and women does not matter materially

in what follows. Failures are coded 1 and successes are coded 0, much as they

might be in practice. Each case is assigned a failure (i.e., Ŷ ¼ 1), but the

same lessons would be learned if each case is assigned a success (i.e., Ŷ ¼ 0).

A base rate of .80 for failures is imposed on both tables.

In practice, this approach makes no sense. Predictors are not being

exploited. But, one can see that there is conditional procedure accuracy

Table 6. Males: A Cross-tabulation When All Cases Are Assigned the Outcome of
Failure (Base Rate ¼ .80, N ¼ 500).

Truth Ŷ ¼ 1 Ŷ ¼ 0 Conditional Procedure Accuracy

Y ¼ 1 (a positive—fail) 400 0 1.0
Y ¼ 0 (a negative—not fail) 100 0 0.0
Conditional use accuracy .80 —
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equality, conditional use accuracy equality, and overall accuracy equality.

The false negative and false positive rates are the same for men and women

as well at 0.0 and 1.0. There is also statistical parity. One does very well on

fairness for a risk tool that cannot help decision-makers address risk in a

useful manner. Accuracy has been sacrificed in service of fairness. The

dramatic trade-off between accuracy and fairness has come down defini-

tively on the side of fairness.

If one allows the base rates for men and women differ, there is immedi-

ately a fairness price. Suppose in Table 6, 500 men fail instead of 400. The

false positive and false negative rates are unchanged. But because the base

rate for men is now larger than the base rate for women (i.e., .83 vs. .80),

conditional use accuracy is now higher for men (i.e., also .83), and a lower

proportion of men will be incorrectly predicted to fail (i.e., .17). This is the

sort of result that would likely trigger charges of gender bias. Even in this

“trivial” case, base rates matter.23

Trivial case #2: Assigning the classes using the same probability for all. Suppose

each case is assigned to an outcome class with the same probability. As in

trivial case #1, no use is made of predictors, so that accuracy does not figure

into the fitting process.

For Tables 8 and 9, the assignment probability for failure is .30 for all, and

therefore, the assignment probability for success is .70 for all. Nothing

Table 7. Females: A Cross-tabulation When All Cases Are Assigned the Outcome of
Failure (Base Rate ¼ .80, N ¼ 50).

Truth Ŷ ¼ 1 Ŷ ¼ 0 Conditional Procedure Accuracy

Y ¼ 1 (a positive—fail) 40 0 1.0
Y ¼ 0 (a negative—not fail) 10 0 0.0
Conditional use accuracy .80 —

Table 8. Males: A Cross-tabulation With Failure Assigned to All With a Probability of
.30 (Base Rate ¼ .80, N ¼ 500).

Truth Ŷ ¼ 1 Ŷ ¼ 0 Conditional Procedure Accuracy

Y ¼ 1 (a positive—fail) 120 280 .30
Y ¼ 0 (a negative—not fail) 30 70 .70
Conditional use accuracy .80 .20
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important changes should some other probability be used.24 The base rates

for men and women are the same. For both, the proportions that fail are .80.

In Tables 8 and 9, we have the same fairness results we had in Tables 6

and 7, again with accuracy sacrificed. But suppose the second row of entries

in Table 9 were 30 and 70 rather than 3 and 7. Now, the failure base rate for

women is .29, not .80. Conditional procedure accuracy equality remains from

which it follows that the false negative and false positive rates are the same as

well. But conditional use accuracy equality is lost. The probabilities of

correct predictions for men are again .80 for failures and .20 for successes.

But for women, the corresponding probabilities are .29 and .71. Base rates

can really matter.

Perfect separation. We now turn to an hðL; SÞ that is not trivial, but also very

unlikely in practice. In a population, the observations are separable. In

Tables 10 and 11, there is perfect separation, and hðL; SÞ finds it. Base rates

are the same for men and women: .80 fail.

There are no false positives or false negatives, so the false positive rate

and the false negative rate for both men and women are 0.0. There is con-

ditional procedure accuracy equality and conditional use accuracy equality

because both conditional procedure accuracy and conditional use accuracy

are perfect. This is the ideal, but fanciful, setting in which we can have it all.

Suppose for women in Table 11, there are 20 women who do not fail

rather than 10. The failure base rate for females is now .67 rather than

Table 9. Females: A Cross-tabulation With Failure Assigned to All With a Probability
of .30 (Base Rate ¼ .80, N ¼ 50).

Truth Ŷ ¼ 1 Ŷ ¼ 0 Conditional Procedure Accuracy

Y ¼ 1 (a positive—fail) 12 28 .30
Y ¼ 0 (a negative—not fail) 3 7 .70
Conditional use accuracy .80 .20

Table 10. Males: A Cross-tabulation With Separation and Perfect Prediction (Base
Rate ¼ .80, N ¼ 500).

Truth Ŷ ¼ 1 Ŷ ¼ 0 Conditional Procedure Accuracy

Y ¼ 1 (a positive—fail) 400 0 1.0
Y ¼ 0 (a negative—not fail) 0 100 1.0
Conditional use accuracy 1.0 1.0
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.80. But because of separation, conditional procedure accuracy equality

and conditional use accuracy equality remain, and the false positive and

false negative rates for men and women are still 0.0. Separation saves

the day.25

Closer to real life. There will virtually never be separation in the real data even

if there there happens to be separation in the joint probability distribution

responsible for the data. The fitting procedure hðL; SÞ may be overmatched

because important predictors are not available or because the algorithm

arrives at a suboptimal result. Nevertheless, some types of fairness can

sometimes be achieved if base rates are cooperative.

If the base rates are the same and hðL; S; Þ finds that, there can be lots of

good news. Tables 12 and 13 illustrate. Conditional procedure accuracy

equality, conditional use accuracy equality, and overall procedure accuracy

hold, and the false negative rate and the false positive rate are the same for

Table 11. Females: A Cross-tabulation With Separation and Perfect Prediction (Base
Rate ¼ .80, N ¼ 50).

Truth Ŷ ¼ 1 Ŷ ¼ 0 Conditional Procedure Accuracy

Y ¼ 1 (a positive—fail) 40 0 1.0
Y ¼ 0 (a negative—not fail) 0 10 1.0
Conditional use accuracy 1.0 1.0

Table 12. Females: A Cross-tabulation Without Separation (Base Rate ¼ .56,
N ¼ 900).

Truth Ŷ ¼ 1 Ŷ ¼ 0 Conditional Procedure Accuracy

Y ¼ 1 (a positive—fail) 300 200 .60
Y ¼ 0 (a negative—not fail) 200 200 .50
Conditional use accuracy .60 .50

Table 13. Males: Confusion Table Without Separation (Base Rate¼ .56, N¼ 1,400).

Truth Ŷ ¼ 1 Ŷ ¼ 0 Conditional Procedure Accuracy

Y ¼ 1 (a positive—fail) 600 400 .60
Y ¼ 0 (a negative—not fail) 400 400 .50
Conditional use accuracy .60 .50
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men and women. Results like those shown in Tables 12 and 13 can occur in

real data but would be rare in criminal justice applications for the common

protected groups. Base rates will not be the same.

Suppose there is separation, but the base rates are not the same. We are

back to Tables 10 and 11, but with a lower base rate. Suppose there is no

separation, but the base rates are the same. We are back to Tables 12 and 13.

From Tables 14 and 15, one can see that when there is no separation and

different base rates, there can still be conditional procedure accuracy equal-

ity. From conditional procedure accuracy equality, the false negative rate and

false positive rate, though different from one another, are the same across

men and women. This is a start. But treatment equality is gone from which it

follows that conditional use accuracy equality has been sacrificed. There is

greater conditional use accuracy for women.

Of the lessons that can be taken from the sets of tables just analyzed,

perhaps the most important for policy is that when there is a lack of separa-

tion and different base rates across protected group categories, a key trade-

off will exist between the false positive and false negative rates on one hand

and conditional use accuracy equality on the other. Different base rates

across protected group categories would seem to require a thumb on the

scale if conditional use accuracy equality is to be achieved. To see if this is

true, we now consider corrections that have been proposed to improve

algorithmic fairness.

Table 14. Confusion Table for Females With No Separation and a Different Base
Rate Compared to Males (Female Base Rate Is 500/900 ¼ .56).

Truth Ŷ ¼ 1 Ŷ ¼ 0 Conditional Procedure Accuracy

Y ¼ 1 (a positive—fail) 300 200 .60
Y ¼ 0 (a negative—not fail) 200 200 .50
Conditional use accuracy .60 .50

Table 15. Confusion Table for Males With No Separation and a Different Base Rate
Compared to Females (Male Base Rate Is 1,000/2,200 ¼ .45).

Truth Ŷ ¼ 1 Ŷ ¼ 0 Conditional Procedure Accuracy

Y ¼ 1 (a positive—fail) 600 400 .60
Y ¼ 0 (a negative—not fail) 600 600 .50
Conditional use accuracy .50 .40
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Potential Solutions

There are several recent papers that have proposed ways to reduce and even

eliminate certain kinds of bias. As a first approximation, there are three

different strategies (Hajian and Domingo-Ferrer 2013), although they can

also be combined when accuracy as well as fairness are considered.

Preprocessing

Preprocessing means eliminating any sources of unfairness in the data before

hðL; SÞ is formulated. In particular, there can be legitimate predictors that are

related to the classes of a protected group. Those problematic associations

can be carried forward by the algorithm.

One approach is to remove all linear dependence between L and S (Berk

2008). One can regress in turn each predictor in L on the predictors in S and

then work with the residuals. For example, one can regress predictors such as

prior record and current charges on race and gender. From the fitted values,

one can construct “residualized” transformations of the predictors to be used.

A major problem with this approach is that interactions effects (e.g., with

race and gender) containing information leading to unfairness are not

removed unless they are explicitly included in the residualizing regression

even if all of the additive contaminants are removed. In short, all interac-

tions effects, even higher order ones, would need to be anticipated. The

approach becomes very challenging if interaction effects are anticipated

between L and S.

Johndrow and Lum (2017) suggest a far more sophisticated residualizing

process. Fair prediction is defined as constructing fitted values for some

outcome using no information from membership in any protected classes.

The goal is to transform all predictors so that fair prediction can be obtained

“while still preserving as much ‘information’ in X as possible” (Johndrow

and Lum 2017:6). They formulate this using the Euclidian distance between

the original predictors and the transformed predictors. The predictors are

placed in order of the complexity of their marginal distribution, and each

is residualized in turn using as predictors results from previous residualiza-

tions and indicators for the protected class. The regressions responsible for

the residualizations are designed to be flexible so that nonlinear relationships

can be exploited. However, interaction variables can be missed. For example,

race can be removed from gang membership and from age, but not necessa-

rily their product—being young and a gang member can still be associated

with race. Also, as Johnson and Lum note, they are only able to consider one
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form of unfairness. Consequently, they risk exacerbating one form of unfair-

ness while mitigating another.

Base rates that vary over protected group categories can be another source

of unfairness. A simple fix is to rebalance the marginal distributions of the

response variable so that the base rates for each category are the same. One

method is to apply weights for each group separately so that the base rates

across categories are the same. For example, women who failed on parole

might be given more weight and males who failed on parole might be given

less weight. After the weighting, men and women could have a base rate that

was the same as the overall base rate.

A second rebalancing method is to randomly relabel some response values

to make the base rates comparable. For example, one could for a random

sample of men who failed on parole, recode the response to a success and for

a random sample of women who succeeded on parole, recode the response to

a failure.

Rebalancing has at least two problems. First, there is likely to be a loss in

accuracy. Perhaps such a trade-off between fairness and accuracy will be

acceptable to stakeholders, but before such a decision is made, the trade-off

must be made numerically specific. How many more armed robberies, for

instance, will go unanticipated in trade for a specified reduction in the dis-

parity between incarceration rates for men and women? Second, rebalancing

implies using different false positive to false negative rates for different

protected group categories. For example, false positives (e.g., incorrectly

predicting that individuals will fail on parole) are treated as relatively more

serious errors for men than for women. In addition to the loss in accuracy,

stakeholders are trading one kind of unfairness for another.

A third approach capitalizes on association rules, popular in marketing

studies (Hastie et al. 2009:section 14.2). Direct discrimination is addressed

when features of some protected class are used as predictors (e.g., male).

Indirect discrimination is addressed when predictors are used that are related

to those protected classes (e.g., prior arrests for aggravated assault). There

can be evidence of either if the conditional probability of the outcome

changes when either direct or indirect measures of protected class member-

ship are used as predictors compared to when they are not used. One potential

correction can be obtained by perturbing the suspect class membership (Ped-

reschi et al. 2008). For a random set of cases, one might change the label for

men to the label for a woman. Another potential correction can be obtained

by perturbing the outcome label. For a random set of men, one might change

failure on parole to success on parole (Hajian and Domingo-Ferrer 2013).

Note that the second approach changes the base rate. We examined earlier

Berk et al. 27



the consequences of changing base rates. Several different kinds of fairness

can be affected. It can be risky to focus on a single definition of fairness.

A fourth approach is perhaps the most ambitious. The goal is to randomly

transform all predictors except for indicators of protected class membership

so that the joint distribution of the predictors is less dependent on protected

class membership. An appropriate reduction in dependence is a policy deci-

sion. The reduction of dependence is subject to two constraints: (1) the joint

distribution of the transformed variables is very close to the joint distribution

of the original predictors, and (2) no individual cases are substantially dis-

torted because large changes are made in predictor values (Calmon et al.

2017). An example of a distorted case would be a felon with no prior arrests

assigned a predictor value of 20 prior arrests. It is unclear, however, how this

procedure maps to different kinds of fairness. For example, the transforma-

tion itself may inadvertently treat prior crimes committed by men as less

serious than similar prior crimes committed by women—the transformation

may be introducing the prospect of unequal treatment. There are also con-

cerns about the accuracy price, which is not explicitly taken into account.

Finally, there is no allowance for interaction effects related to protected class

membership unless all of the relevant product variables are included in the

set of predictors. And even if such knowledge were available, the number of

columns in the matrix of predictors could become enormous, and very high

levels of multicollinearity would follow.

In-processing

In-processing means building fairness adjustments into hðL; SÞ. To take a

simple example, risk forecasts for particular individuals that have substan-

tial uncertainty can be altered to improve fairness. If whether or not an

individual is projected as high risk depends on little more than a coin flip,

the forecast of high risk can be changed to low risk to serve some fairness

goal. One might even order cases from low certainty to high certainty for

the class assigned so that low certainty observations are candidates for

alterations first. The reduction in out-of-sample accuracy may well be very

small. One can embed this idea in a classification procedure so that explicit

trade-offs are made (Corbett-Davies et al. 2017; Kamiran and Calders

2009, 2012). But this too can have unacceptable consequences for the false

positive and false negative rates. A thumb is being put on the scale once

again. There is inequality of treatment.

An alternative approach is to add a new penalty term to a penalized fitting

procedure. Kamishima and colleagues (2011) introduce a fairness regularizer
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into a logistic regression formulation that can penalize the fit for inappropri-

ate associations between membership in a protected group class and the

response or legitimate predictors. However, this too can easily lead to

unequal treatment.

Rather than imposing a fairness penalty, one can impose fairness con-

straints. Agarwal and colleagues (2018) define a “reduction” that treats the

accuracy-fairness trade-off as a sequential “game” between two players. At

each step in the gaming sequence, one player maximizes accuracy and the

other player imposes a particular amount of fairness. Fairness, which can be

defined in several different ways, translates into a set of linear constraints

imposed on accuracy that can also be represented as costs. These fairness-

specific costs are weights easily ported to a wide variety of classifiers,

including some off-the-shelf software. The technical advances from this

work are important, but as before, only some kinds of fairness are addressed.

M. Kearns and colleagues (2018) build on the idea of a reduction. They

formulate a sequential zero-sum game between a “learner” seeking accuracy

and an “auditor” seeking fairness. The algorithm requires users to specify a

framework in which groups at risk to unfairness are defined. For example,

one might consider all intersections of a set of attributes such as gender, race,

and gang membership (e.g., black, male, gang members). The groups that can

result are less coarse than groups defined by a single attribute such as race.

Equal fairness is imposed over all such groups. Because the number of

groups can be very large, there would ordinarily be difficult computational

problems. However, the reduction leads to a practical algorithm that can be

seen as a form of weighting.

Fairness can be defined at the level of individuals (Dwork et al. 2012;

Joseph et al. 2016). The basic idea is that similarly situated individuals

should be treated similarly. Berk and colleagues (2017) propose a logistic

regression classifier with a conventional complexity regularizer and a fair-

ness regularizer operating at the individual level. One of their fairness

regularizers evaluates the difference between fitted probabilities for indi-

viduals across protected classes. For example, the fitted probabilities of an

arrest for black offenders are compared offender by offender to the fitted

probabilities of an arrest for white offenders. Greater disparities imply less

fairness. Also considered is offender by offender actual outcomes (e.g.,

arrest or not). Disparities in the fitted probabilities are given more weight

if the actual outcome is the same. Ridgeway and Berk (2017) apply a

similar individual approach to stochastic gradient boosting. However, map-

ping individual definitions of unfairness to group-based definitions has yet

to be effectively addressed.
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Postprocessing

Postprocessing means that after hðL; SÞ is applied, its performance is adjusted

to make it more fair. To date, perhaps the best example of this approach draws

on the idea of random reassignment of the class label previously assigned by

hðL; SÞ (Hardt et al. 2016). Fairness, called “equalized odds,” requires that the

fitted outcome classes (e.g., high risk or low risk) are independent of protected

class membership, conditioning on the actual outcome classes. The requisite

information is obtained from the rows of a confusion table and, therefore,

represents classification accuracy, not prediction accuracy. There is a more

restrictive definition called “equal opportunity” requiring such fairness only

for the more desirable of the two outcome classes.26

For a binary response, some cases are assigned a value of 0 and some

assigned a value of 1. To each is attached a probability of switching from a 0

to a 1 or from a 1 to a 0 depending in whether a 0 or a 1 is the outcome

assigned by f̂
�ðL; SÞ. These probabilities can differ from one another and

both can differ across different protected group categories. Then, there is a

linear programming approach to minimize the classification errors subject to

one of the two fairness constraints. This is accomplished by the values

chosen for the various probabilities of reassignment. The result is a

f̂
�ðL; SÞ that achieves conditional procedure accuracy equality.

The implications of this approach for other kinds of fairness are not clear,

and conditional use accuracy (i.e., equally accurate predictions) can be a

casualty. It is also not clear how best to build in the relative costs of false

negatives and false positives. And, there is no doubt that accuracy will suffer

more when the probabilities of reassignment are larger. Generally, one would

expect to have overall classification accuracy comparable to that achieved

for the protected group category for which accuracy is the worst. Moreover,

the values chosen for the reassignment probabilities will need to be larger

when the base rates across the protected group categories are more disparate.

In other words, when conditional procedure accuracy equality is most likely

to be in serious jeopardy, the damage to conditional procedure accuracy will

be the greatest. More classification errors will be made; more 1s will be

treated as 0s and more 0s will be treated as 1s. A consolation may be that

everyone will be equally worse off.

Making Fairness Operational

It has long been recognized that efforts to make criminal justice decisions

more fair must resolve a crucial auxiliary question: equality with respect to
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what benchmark (Blumstein et al. 1983)? To take an example from today’s

headlines (Corbett-Davies et al. 2017; Salman, Coz, and Johnson 2016),

should the longer prison terms of black offenders be on the average the same

as the shorter prison terms given to white offenders or should the shorter

prison terms of white offenders be on the average the same as the longer

prison terms given to black offenders? Perhaps one should split the differ-

ence? Fairness by itself is silent on the choice, which would depend on views

about the costs and benefits of incarceration in general. All of the proposed

corrections for unfairness we have found are agnostic about what the target

outcome for fairness should be. If there is a policy preference, it should be

built into the algorithm, perhaps as additional constraints or through an

altered loss function. For instance, if mass incarceration is the dominant

concern, the shorter prison terms of white offenders might be a reasonable

fairness goal for both whites and blacks.27

We have been emphasizing binary outcomes, and the issues are much the

same. For example, whose conditional use accuracy should be the policy

target? Should the conditional use accuracy for male offenders or female

offenders become the conditional use accuracy for all? An apparent solution

is to choose as the policy target the higher accuracy. But that ignores the

consequences for the false negative and false positive rates. By those mea-

sures, an undesirable benchmark might result. The benchmark determination

has made trade-offs more complicated, and some kind of policy balance

would need to be found.

Future Work

Corrections for unfairness combine technical challenges with policy chal-

lenges. We have currently no definitive responses to either. Progress will

likely come in many small steps beginning with solutions from tractable,

highly stylized formulations. One must avoid vague or unjustified claims or

rushing these early results into the policy arena. Because there is a large

market for solutions, the temptations will be substantial. At the same time,

the benchmark is current practice. By that standard, even small steps, imper-

fect as they may be, can in principle lead to meaningful improvements in

criminal justice decisions. They just need to be accurately characterized.

But even these small steps can create downstream difficulties. The train-

ing data used for criminal justice algorithms necessarily reflect past prac-

tices. Insofar as the algorithms affect criminal justice decisions, existing

training data may be compromised. Current decisions are being made dif-

ferently. It will be important, therefore, for existing algorithmic results to be

Berk et al. 31



regularly updated using the most recent training data. Some challenging

technical questions follow. For example, is there a role for online learning?

How much historical data should be discarded as the training data are

revised? Should more recent training data be given more weight in the

analysis? But one can imagine a world in which algorithms improve criminal

justice decisions, and those improved criminal justice decisions provide

training data for updating the algorithms. Over several iterations, the accu-

mulated improvements might be dramatic.

A Brief Empirical Example of Fairness Trade-offs with
In-processing

There are such stark differences between men and women with respect to

crime that cross-gender comparisons allow for relatively simple and instruc-

tive discussions of fairness. However, they also convey misleading impres-

sions of the role of fairness in general. The real world can be more

complicated and subtle. To illustrate, we draw on some ongoing work being

undertaken for a jurisdiction concerned about racial bias that could result

from release decisions at arraignment. The brief discussion to follow will

focus on in-processing adjustments for bias. Similar problems can arise for

preprocessing and postprocessing.

At a preliminary arraignment, a magistrate must decide whom to release

awaiting that offender’s next court appearance. One factor considered,

required by statute, is an offender’s threat to public safety. A forecasting

algorithm currently is being developed, using the machine learning proce-

dure random forests, to help in the assessment of risk. We extract a simplified

illustration from that work for didactic purposes.

The training data are comprised of black and white offenders who had

been arrested and arraigned. As a form of in-processing, random forests was

applied separately to black and white offenders. Accuracy was first opti-

mized for whites. Then, the random forests application to the data for blacks

were tuned so that conditional use accuracy was virtually same as for whites.

The tuning was undertaken using stratified sampling as each tree in the forest

was grown, the outcome classes as strata. This is effectively the same as

changing the prior distribution of the response and alters each tree. All of the

output can change as a result. This is very different from trying to introduce

more fairness in the algorithmic output alone.

Among the many useful predictors were age, prior record, gender, date of

the next most recent arrest, and the age at which an offender was first charged

as an adult. Race and residence zip code were not included as predictors.28

32 Sociological Methods & Research 50(1)



Two outcome classes are used for this illustration: within 21 months of

arraignment, an arrest for a crime of violence (i.e., a failure) or no arrest for

a crime of violence (i.e., a success). We use these two categories because

should a crime of violence be predicted at arraignment, an offender would

likely be detained. For other kinds of predicted arrests, an offender might well

be freed or diverted into a treatment program. A prediction of no arrest might

well lead to a release.29 A 21-month follow up may seem inordinately lengthy,

but in this jurisdiction, it can take that long for a case to be resolved.30

Table 16 provides the output that can be used to consider the kinds of

fairness commonly addressed in the existing criminal justice literature. Suc-

cess base rates are reported on the far left of the table, separately for blacks

and whites: .89 and .94 respectively. For both, the vast majority of offenders

are not arrested for a violent crime, but blacks are more likely to be arrested

for a crime of violence after a release. It follows that the white rearrest rate is

.06, and the black rearrest rate is .11, nearly a 2 to 1 difference.

For this application, we focus on the probability that when the absence of

an arrest for a violent crime is forecasted, the forecast is correct. The two

different applications of random forests were tuned so that the probabilities

are virtually the same: .93 and .94. There is conditional use accuracy equal-

ity, which some assert is a necessary feature of fairness.

But as already emphasized, except in very unusual circumstances, there

are trade-offs. Here, the false negative and false positive rates vary drama-

tically by race. The false negative rate is much higher for whites so that

violent white offenders are more likely than violent black offenders to be

incorrectly classified as nonviolent. The false positive rate is much higher for

blacks so that nonviolent black offenders are more likely than nonviolent

white offenders to be incorrectly classified as violent. Both error rates mis-

takenly inflate the relative representation of blacks predicted to be violent.

Such differences can support claims of racial injustice. In this application, the

trade-off between two different kinds of fairness has real bite.

Table 16. Fairness Analysis for Black and White Offenders at Arraignment Using as
an Outcome an Absence of Any Subsequent Arrest for a Crime of Violence (13,396
Blacks; 6,604 Whites).

Race Base Rate
Conditional

Use Accuracy
False Negative

Rate
False Positive

Rate

Black .89 .93 .49 .24
White .94 .94 .93 .02
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One can get another perspective on the source of the different error rates

from the ratios of false negatives and false positives. From the cross-

tabulation (i.e., confusion table) for blacks, the ratio of the number of false

positives to the number of false negatives is a little more than 4.2. One false

negative is traded for 4.2 false positives. From the cross-tabulation for

whites, the ratio of the number of false negatives to the number of false

positives is a little more than 3.1. One false positive is traded for 3.1 false

negatives. For blacks, false negatives are especially costly so that the algo-

rithm works to avoid them. For whites, false positives are especially costly so

that the algorithm works to avoid them. In this instance, the random forest

algorithm generates substantial treatment inequality during in-processing

while achieving conditional use accuracy equality.

With the modest difference in base rates, the large difference in treatment

equality may seem strange. But recall that to arrive at conditional use accu-

racy equality, random forests were grown and tuned separately for blacks and

whites. For these data, the importance of specific predictors often varied by

race. For example, the age at which offenders received their first charge as an

adult was a very important predictor for blacks but not for whites. In other

words, the structure of the results was rather different by race. In effect, there

was one hBðL; SÞ for blacks and another hW ðL; SÞ for whites, which can help

explain the large racial differences in the false negative and false positive

rates. With one exception (Joseph et al. 2016), different fitting structures for

different protected group categories have to our knowledge not been consid-

ered in the technical literature, and it introduces significant fairness compli-

cations (Zliobaite and Custers 2016).31

In summary, Table 16 illustrates well the formal results discussed earlier.

There are different kinds of fairness that in practice are incompatible. There

is no technical solution without some price being paid. How the trade-offs

should be made is a political decision.

Conclusions

In contrast to much of the rhetoric surrounding criminal justice risk assess-

ments, the problems can be subtle, and there are no easy answers. Except in

stylized examples, there will be trade-offs. These are mathematical facts

subject to formal proofs (Chouldechova 2017; Kleinberg et al. 2016). Deny-

ing that these trade-offs exist is not a solution. And in practice, the issues can

be even more complicated, as we have just shown.

Perhaps the most challenging problem in practice for criminal justice risk

assessments is that different base rates are endemic across protected group
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categories. There is, for example, no denying that young men are responsible

for the vast majority of violent crimes. Such a difference can cascade through

fairness assessments and lead to difficult trade-offs.

Criminal justice decision makers have begun wrestling with the issues.

One has to look no further than the recent ruling by the Wisconsin Supreme

Court, which upheld the use of one controversial risk assessment tool (i.e.,

COMPAS) as one of many factors that can be used in sentencing (State of

Wisconsin v. Eric L. Loomis, Case # 2915AP157-CR). Fairness matters. So

does accuracy.

There are several potential paths forward. First, criminal justice risk

assessments have been undertaken in the United States since the 1920s

(Borden 1928; Burgess 1928). Recent applications of advanced statistical

procedures are just a continuation of long-term trends that can improve

transparency and accuracy, especially compared to decisions made solely

by judgment (Berk and Hyatt 2015). They also can improve fairness. But

categorical endorsements or condemnations serve no one.

Second, as statistical procedures become more powerful, especially when

combined with “big data,” the various trade-offs need to be explicitly rep-

resented and available as tuning parameters that can be easily adjusted. Such

work is underway, but the technical challenges are substantial. There are

conceptual challenges as well, such as arriving at measures of fairness with

which trade-offs can be made. There too, progress is being made.

Third, in the end, it will fall to stakeholders—not criminologists, not

statisticians, and not computer scientists—to determine the trade-offs. How

many unanticipated crimes are worth some specified improvement in con-

ditional use accuracy equality? How large an increase in the false negative

rate is worth some specified improvement in conditional use accuracy equal-

ity? These are matters of values and law, and ultimately, the political process.

They are not matters of science.

Fourth, whatever the solutions and compromises, they will not come

quickly. In the interim, one must be prepared to seriously consider modest

improvements in accuracy, transparency, and fairness. One must not forget

that current practice is the operational benchmark (Salman et al. 2016). The

task is to try to improve that practice.

Finally, one cannot expect any risk assessment tool to reverse centuries of

racial injustice or gender inequality. That bar is far too high. But, one can

hope to do better.
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Notes

1. Many of the issues apply to actuarial methods in general about which concerns

have been raised for some time (Messinger and Berk 1987; Feeley and Simon

1994).

2. An algorithm is not a model. An algorithm is a sequential set of instructions for

performing some task. When a checkbook is balanced, an algorithm is being

applied. A model is an algebraic statement about how the world works. In

statistics, often it represents how the data were generated.

3. Similar reasoning is often used in the biomedical sciences. For example, a suc-

cess can be a diagnostic test that identifies a lung tumor.

4. Language here can get a little murky because the most accurate term depends on

the use to which the algorithmic output will be put. We use the term “predicted”

to indicate when one is just referring to fitted values (i.e., in training data) and

also the when one is using fitted values to make a forecast about an outcome that

has not yet occurred.

5. We proceed in this manner because there will be clear links to fairness. There are

many other measures from such a table for which this is far less true. Powers

(2011) provides an excellent review.

6. There seems to be less naming consistency for these of kinds errors compared to

false negatives and false positives. Discussions in statistics about generalization

error (Hastie et al. 2009:section 7.2) can provide one set of terms whereas

concerns about errors from statistical tests can provide another. In neither case,

moreover, is the application to confusion tables necessarily natural. Terms like

the “false discovery rate” and the “false omission rate,” or “Type II” and “Type I”

errors can be instructive for interpreting statistical tests but build in content that is

not relevant for prediction errors. There is no null hypothesis being tested.

7. For many kinds of criminal justice decisions, statutes require that decision mak-

ers take “future dangerousness” into account. The state of Pennsylvania, for

example, requires sentencing judges to consider future dangerousness. Typically,

the means by which such forecasts are made is unspecified and in practice, can
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depend on the experience, judgment, and values of the decision maker. This

might be an example of a sensible calibration benchmark.

8. The binary response might be whether an inmate is reported for serious mis-

conduct such as an assault on a guard or another inmate.

9. How a class of people becomes protected can be a messy legislative and judicial

process (Rich 2014). Equally messy can be how to determine when an individual

is a member of a particular protected class. For this article, we take as given the

existence of protected groups and clear group membership.

10. The IID requirement can be relaxed somewhat (Rosenblatt 1956; Wu 2005).

Certain kinds of dependence can be tolerated. For example, suppose the depen-

dence between any pair of observations declines with the distance between the

two observations and at some distance of sufficient size becomes independence.

A central limit theorem then applies. Perhaps the most common examples are

found when data are arrayed in time. Observations that are proximate to one

another may be correlated, but with sufficient elapsed time become uncorrelated.

These ideas can apply to our discussion and permit a much wider range of

credible applications. However, the details are beyond the scope of this article.

11. A joint probability distribution is essentially an abstraction of a high-dimensional

histogram from a finite population. It is just that the number of observations is

now limitless, and there is no binning. As a formal matter, when all of the

variables are continuous, the proper term is a joint density because densities

rather than probabilities are represented. When the variables are all discrete, the

proper term is a joint probability distribution because probabilities are repre-

sented. When one does not want to commit to either or when some variables are

continuous and some are discrete, one commonly uses the term joint probability

distribution. That is how we proceed here.

12. Science fiction aside, one cannot assume that even the most powerful machine

learning algorithm currently available with access to all of the requisite predic-

tors will “learn” the true response surface. And even if it did, how would one

know? To properly be convinced, one would already have to know the true

response surface, and then, there would be no reason to estimate it (Berk

2016a:section 1.4).

13. The normal equations, which are the source of the least squares solution in linear

regression, are a special case.

14. We retain S in the best approximation even though it represents protected groups.

The wisdom of proceeding in this manner is considered later when fairness is

discussed. But at the very least, no unfairness can be documented unless S is

included in the data.

15. There can be challenges in practice if, for example, hðL; SÞ is tuned with training

data. Berk and his colleagues (2018) provide an accessible discussion.
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16. The meaning of “decision” can vary. For some, it is assigning an outcome class to

a numeric risk score. For others, it is a concrete, behavioral action taken with the

information provided by a risk assessment.

17. Accuracy is simply (1 � error), where error is a proportion misclassified or the

proportion forecasted incorrectly.

18. Dieterich and his colleagues (2016:7) argue that overall there is accuracy equity

because “the AUCs obtained for the risk scales were the same, and thus equitable,

for blacks and whites.” The AUC depends on the true positive rate and false

positive rate, which condition on the known outcomes. Consequently, it differs

formally from overall accuracy equality. Moreover, there are alterations of the

AUC that can lead to more desirable performance measures (Powers 2011).

19. One of the two outcome classes is deemed more desirable, and that is the out-

come class for which there is conditional procedure accuracy equality. In crim-

inal justice settings, it can be unclear which outcome class is more desirable. Is an

arrest for burglary more or less desirable than an arrest for a straw purchase of a

firearm? But if one outcome class is recidivism and the other outcome class is no

recidivism, equality of opportunity refers to conditional procedure accuracy

equality for those who did not recidivate.

20. Chouldechova builds on numeric risk scores. A risk instrument is said to be well

calibrated when predicted probability of the preferred outcome (e.g., no arrest) is

the same for different protected group classes at each risk score value—or binned

versions of those values. Under these circumstances, it is possible for a risk

instrument to have predictive parity but not be well calibrated. For reasons that

are for this article peripheral, both conditions are the same for a confusion table

with a binary outcome. For Kleinberg et al. (2016:4), a risk instrument that is well

calibrated requires a bit more. The risk score should perform like a probability. It

is not apparent how this would apply to a confusion table.

21. One can turn the problem around and consider the degree to which individuals

who have the same binary outcome (e.g., an arrest) have similar predicted out-

comes and whether the degree of similarity in predicted outcomes varies by

protected class membership (Berk, Heidari et al. 2017; Ridgeway and Berk

2017).

22. For example, machine learning algorithms usually are inductive. They engage in

automated “data snooping,” and an empirical determination of tuning parameter

values exacerbates the nature and extent of the overfitting. Consequently, one

should not apply the algorithm anew to the test data. Rather, the algorithmic

output from the training data is taken as given, and fitted values using the test

data are obtained.

23. When base rates are the same in this example, one perhaps could achieve perfect

fairness while also getting perfect accuracy. The example doesn’t have enough
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information to conclude that the populations aren’t separable. But that is not the

point we are trying to make.

24. The numbers in each cell assume for arithmetic simplicity that the counts come

out exactly as they would in a limitless number of realizations. In practice, an

assignment probability of .30 does not require exact cell counts of 30 percent.

25. Although statistical parity has not figured in these illustrations, changing the base

rate negates it.

26. In criminal justice applications, determining which outcome is more desirable

will often depend on which stakeholders you ask.

27. Zliobaite and Custers (2016) raise related concerns for risk tools derived from

conventional linear regression for lending decisions.

28. Because of racial residential patterns, zip code can be a strong proxy for race. In

this jurisdiction, stakeholders decided that race and zip code should not be

included as predictors. Moreover, because of separate analyses for whites and

blacks, race is a constant within each analysis.

29. Actually, the decision is more complicated because a magistrate must also antici-

pate whether an offender will report to court when required to do so. There are

machine learning forecasts being developed for failures to appear, but a discus-

sion of that work is well beyond the scope of this article.

30. The project is actually using four outcome classes, but a discussion of those

results complicates things unnecessarily. They require a paper of their own.

31. There are a number of curious applications of statistical procedures in the Zliobaite

and Custers paper (e.g., propensity score matching treating gender like an experi-

mental intervention despite it being a fixed attribute). But the concerns about

fairness when protected groups are fitted separately are worth a serious read.
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